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Ground-state entropy of the Potts antiferromagnet with next-nearest-neighbor spin-spin
couplings on strips of the square lattice

Shu-Chiuan Chang1,* and Robert Shrock1,2,†

1C. N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
2Physics Department, Brookhaven National Laboratory, Upton, New York 11793-5000

~Received 18 October 1999; revised manuscript received May 15 2000!

We present exact calculations of the zero-temperature partition function~chromatic polynomial! andW(q),
the exponent of the ground-state entropy, for theq-state Potts antiferromagnet with next-nearest-neighbor
spin-spin couplings on square lattice strips, of widthLy53 andLy54 vertices and arbitrarily great lengthLx

vertices, with both free and periodic boundary conditions. The resultant values ofW for a range of physicalq
values are compared with each other and with the values for the full two-dimensional lattice. These results give
insight into the effect of such nonnearest-neighbor couplings on the ground-state entropy. We show that the
q52 ~Ising! andq54 Potts antiferromagnets have zero-temperature critical points on theLx→` limits of the
strips that we study. With the generalization ofq from Z1 to C, we determine the analytic structure ofW(q)
in the q plane for the various cases.

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The q-state Potts antiferromagnet with the usual near
neighbor spin-spin couplings@1,2# exhibits nonzero ground
state entropy,S0.0 ~without frustration! for sufficiently
largeq on a given latticeL. This is equivalent to a ground
state degeneracy per siteW.1, since S05kB ln W. Such
nonzero ground-state entropy is important as an exceptio
the third law of thermodynamics@3,4#. A physical example
of nonzero ground-state entropy is ice@5–7#. In this q state,
Potts antiferromagnet atT50, the value of each spin must b
different than the values of all of the other spins to which
is coupled. There is a close connection with graph the
here, since the zero-temperature partition function of
above-mentionedq-state Potts antiferromagnet on a latticeL
or, more generally, a graphG, satisfies

Z~G,q,T50!PAF5P~G,q!, ~1.1!

where P(G,q) is the chromatic polynomial expressing th
number of ways of coloring the vertices of the graphG with
q colors such that no two adjacent vertices have the s
color ~for reviews, see Refs.@8–11#!. The minimum number
of colors for which this coloring is possible, i.e., the min
mum integer value ofq for which P(G,q) is nonzero, is
denoted the chromatic number ofG, x(G).

From Eq.~1.1!, it follows that1

*Email address: shu-chiuan.chang@sunysb.edu
†Email address: robert.shrock@sunysb.edu. On sabbatical lea

BNL.
1At certain special pointsqs ~typically qs50,1,...,x(G)), one has

the noncommutativity of limits limq→qs
limn→`P(G,q)1/n

Þ limn→` limq→qs
P(G,q)1/n, and hence it is necessary to spec

the order of the limits in the definition ofW($G%,qs) @12#. We use
the first order of limits here; this has the advantage of remov
certain isolated discontinuities inW.
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W~$G%,q!5 lim
n→`

P~G,q!1/n, ~1.2!

where n5v(G) is the number of vertices ofG and $G%
5 limn→`G.

SinceP(G,q) is a polynomial, one can generalizeq from
Z1 to C. The zeros ofP(G,q) in the complexq plane are
called chromatic zeros; a subset of these may form an a
mulation set in then→` limit, denotedB, which is the
continuous locus of points whereW($G%,q) is nonanalytic.
The maximal region in the complexq plane to which one can
analytically continue the functionW($G%,q) from physical
values where there is nonzero ground-state entropy, is
noted R1 . The maximal value ofq whereB intersects the
~positive! real axis is labeledqc($G%). This value is impor-
tant sinceW($G%,q) is a real analytic solution for realq
down toqc($G%). For regions other thanR1 , one can only
determine the magnitudeuW($G%,q)u unambiguously@12#.
In addition to Refs.@8–12#, some previous works on chro
matic polynomials include Refs.@13–45#.

In previous works we have carried out comparative st
ies ofW for different lattices and have explored the effects
different lattice properties such as coordination numb
@12,26,29–31,34,35,39–42# and@45#. In general it was found
that as one increased the lattice coordination number,
ground-state entropy of theq-state Potts antiferromagnet~if
nonzero for the given value ofq! decreased. This can b
understood as a consequence of the fact that as one incr
the lattice coordination number, one is increasing the c
straints on the coloring of a given vertex subject to the c
straint that other vertices of the lattice adjacent to this o
~i.e., connected with a bond or edge of the lattice! have dif-
ferent colors. Another way in which to explore this effect
to consider non-nearest-neighbor spin-spin couplings. Ag
in general, these increase the constraints on the values
any given spin can take on, and hence decrease the gro
state entropy. We wish to make this more quantitative a
shall do so here using exact solutions for the chromatic po
nomials and rigorous bounds. A natural starting point
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PRE 62 4651GROUND-STATE ENTROPY OF THE POTTS . . .
studies of such nonnearest-neighbor spin-spin couplings
consider the model on a given lattice and add next-near
neighbor~nnn! spin-spin couplings. Equivalently, we can r
define the lattice itself by considering it as a graphG with
vertices at the usual lattice sites but with bonds~5 edges in
graph theory nomenclature! consisting not only of the usua
bonds joining these lattice sites but also bonds joining ne
nearest-neighbor lattice sites. We then consider the nea
neighbor Potts antiferromagnet on this redefined lattice.

Perhaps the simplest case that one could consider is
q-state Potts antiferromagnet in one dimension; the lat
here is just the lineTn or circle Cn for the case of free and
periodic boundary conditions, respectively~denoted FBCx
and PBCx). One hasP(Tn ,q)5q(q21)n21 so W5q21
and R1 is the entireq plane. For the circle,P(Cn ,q)5(q
21)n1(q21)(21)n. In this case, ifuq21u.1, then W
5q21, while if uq21u<1, then uWu51, so thatqc52.
Hence for either FBCx or PBCx there is nonzero ground-sta
entropy S05kB ln(q21) for q.2. The addition of next-
nearest neighbor bonds convertsTn or Cn to a open or cyclic
strip of triangles, respectively, with each pair sharing
edge. We denote these strips tri(Ly52), Nt , BCx , where
BCx5FBCx or PBCx . In the cyclic case, the degreeD ~num-
ber of neighboring vertices! of each vertex is changed from
to 4, and this is also true of the internal vertices in the op
case. The chromatic numbers in these cases are~i! x52 for
the line Tn , ~ii ! x52(3) for Cn with n even~odd!, ~iii ! x
53 for the open triangular strip, and~iv! x53(4) for the
cyclic triangular strip with the number of trianglesNt even
~odd!. For the Potts antiferromagnet withnnn spin-spin cou-
plings on the line~equivalently, on the open triangular strip!
with n vertices,

P@sqd~Ly51!,FBCy ,FBCx ,q#

5P@ tri~Ly52!,FBCy ,FBCx ,q#

5q~q21!~q22!n22 ~1.3!

and henceW5q22 andR1 is the full q plane.
For the Potts antiferromagnet withnnn spin-spin cou-

plings on the circuit, the equivalence is with the cyclic tria
gular strip:

P†sqd~Ly51!,FBCy ,PBCx ,q‡

5P†tri~Ly52!,FBCy ,PBCx ,q‡. ~1.4!

If the strip length involves an even number of trianglesNt
5n52m, then@35,38#

P@ tri~Ly52!,Nt52m,FBCy ,PBCx ,q#

5q223q111~q22!2m1~q21!@~l t2,3!
m

1~l t2,4!
m# ~1.5!

while for oddNt5n52m11 @45#
to
st-
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st-
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P@ tri~Ly52!,Nt52m11,FBCy ,PBCx ,q#

52~q223q11!1~q22!@~q22!2#m

1
1

2
~q21!~q23!F @~l t2,3!

m1~l t2,4!
m#

1
@~l t2,3!

m2~l t2,4!
m#

l t2,32l t2,4
G , ~1.6!

where

l t2,~3,4!5
1

2
@522q6A924q#. ~1.7!

In both cases,qc53 andW5q22 for q>3 ~and more gen-
erally, for q in the regionR1 given in @35#!. Thus, the addi-
tion of next-nearest-neighbor couplings increases the va
of q beyond which there is nonzero ground-state entro
from 2 to 3 and decreases the value of the resultant entr
from S05kB ln(q21) to S05kB ln(q22) for q>3.

We proceed to consider the Potts antiferromagnet on
square lattice, and again add next-nearest-neighbor
plings, or equivalently redefine the lattice so that the bon
consists not just of the usual horizontal and vertical bon
but also of bonds connecting the diagonally opposite verti
of each square. Following our earlier notation@25#, we shall
denote this lattice as sqd , where thed refers to the addition
of these diagonal bonds. For the square~sq! and sqd lattices,
the chromatic numbers are

x~sq!52, x~sqd!54. ~1.8!

No exact solution is known forW(q) on the sqd lattice. In
the absence of such an exact solution, Tsai and one o
~R.S.! have carried out Monte Carlo measurements
W(sqd ,q) and have derived a rigorous lower bound@25#

W~sqd ,q!>
~q22!~q23!

q21
for q>x~sqd!. ~1.9!

This lower bound was compared with the actual value
W(sqd ,q), as determined by the Monte Carlo measureme
for 5<q<10 @25,24# and was found to lie very close it~cf.
Table III of Ref. @25#!. For example, forq56 andq58, the
ratio of the lower bound divided by the actual value w
0.981 and 0.995, and it increased monotonically toward un
as q increased. Since it is possible to obtain exact analy
solutions forW on infinite-length, finite-width strips of two-
dimensional ~2D! lattices @13,12,29–31# and @34,35,39–
41,45#, one has an alternate way to investigateW(sqd ,q),
namely, to calculateW exactly on strips of the sqd lattice,
with various boundary conditions. It has, indeed, been fou
@31# that for the square and triangular lattices, the values
W for such infinite-length strips of even rather modest wid
are close to the corresponding values for the 2D thermo
namic limit, for moderate values ofq. In the present pape
we report exact calculations ofP(q), W(q), andB on strips
of the sqd lattice with various boundary conditions. The lon
gitudinal and transverse directions on the strip are taken
be x̂ andŷ, respectively. In Fig. 1 we show some illustrativ
strips of the sqd lattice.
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4652 PRE 62SHU-CHIUAN CHANG AND ROBERT SHROCK
An important property is that with the two added diagon
bonds, each square of the sqd lattice constitutes a complet
graph on four vertices.@Here, the complete graph onr ver-
tices Kr is defined as the graph each of whose vertices
connected to all of the otherr 21 vertices by bonds
~5edges!; it has chromatic numberx(Kr)5r .# Compared
with the square lattice, for a givenq coloring of the sqd
lattice, the addition of these bonds clearly increases the c
straints on the coloring of each vertex and therefore
creasesP(G,q). As we proved earlier@26#, if a lattice L8
can be obtained from anotherL, by connecting disjoint ver-
tices ofL with bonds, thenW(L8,q)<W(L,q) for q color-
ings of the two lattices. An example of the application of th
theorem was given in Ref.@26#: for q colorings of the square
triangular ~tri!, and honeycomb~hc! lattices, W(tri,q)
,W(sq,q)<W(hc,q). @W(sq,q) is strictly less than
W(hc,q) except at the valueq52, where W(sq,2)
5W(hc,2)51.# In the present context, we note the inequal
for q colorings of these lattices:

W~sqd ,q!,W~ tri,q!,W~sq,q!<W~hc,q! ~1.10!

~for q values where such colorings are possible!.

FIG. 1. Illustrative strip graphs of the sqd lattice: ~a,b! Ly52,3
(FBCy ,PBCx) ~cyclic!; ~c! Ly53, (PBCy ,PBCx) ~toroidal bound-
ary conditions!.
l

is

n-
-

We use the symbols (FBCy) and (PBCy) for free and
periodic transverse boundary conditions and, as abo
FBCx , PBCx , and TPBCx for free, periodic, and twisted
periodic longitudinal boundary conditions. The ter
‘‘twisted’’ means that the longitudinal ends of the strip a
identified with reversed orientation. These strip graphs
be embedded on surfaces with the following topologies:~i!
(FBCy ,FBCx): open strip,~ii ! (PBCy ,FBCx): cylindrical,
~iii ! (FBCy ,PBCx): cylindrical ~denoted cyclic here!, ~iv!
(FBCy ,TPBCx): Möbius; ~v! (PBCy ,PBCx): torus, and~vi!
(PBCy ,TPBCx): Klein bottle.2

The labeling of the strips generally follows our earli
labeling conventions. Thus for a strip with free transve
and longitudinal boundary conditions. (FBCy ,FBCx), the
length of the strip is taken to bem11 squares or equiva
lently edges, withLx5m12, and the width isLy vertices.
This strip thus hasn5LxLy vertices ande54LxLy23(Lx
1Ly)12 edges. For cyclic strips, the width is defined in t
same manner and the length isLx vertices or equivalently
edges. For strips with periodic transverse boundary con
tions, including (PBCy ,FBCx) and (PBCy ,PBCx), a width
of Ly53 means that the cross section involvesLy vertices.
For Lx5m>3 to avoid certain degenerate cases, thed
strips with either cyclic or torus boundary conditions ha
n5LxLy vertices. With the same restriction, the cyclic stri
have e5Lx(4Ly23) edges and the torus strips havee
54LxLy edges.

Let us next comment on the planarity or nonplanarity
the strips of the sqd lattice with various boundary conditions
We shall concentrate here on nondegenerate cases whe
strips are proper graphs without multiple edges. Consi
first the strips with (FBCy ,FBCx) boundary conditions. For
Ly52 and arbitraryLx , it is easy to show that these ar
planar by taking the second diagonal bond for each squ
and drawing it external to the strip; by redefining the labeli
of the x and y axes, it follows that this strip with
(FBCy ,FBCx) boundary conditions,Lx52, and arbitraryLy
is also planar. For other cases we shall make use of
theorems from graph theory. The first of these states thatG
is a planar graph withn vertices ande edges withn>3, then
e<3(n22) @e.g., Corollary 11.1~c! in Ref. @10## and the
second states that ifG is a planar graph withn>4, thenG
has at least four vertices of degreeD<5 @e.g., Corollary
11.1~e! in @10##. Now

3~n22!2e52LxLy13~Lx1Ly!

28 for sqd , ~FBCy ,FBCx! ~1.11!

so that for sufficiently greatLx and/or Ly , 3(n22)2e is
negative and hence the strip is nonplanar, by the first th
rem. For example, 3(n22)2e,0 if Ly54 and Lx>5 or
vice versa, i.e., Lx54 andLy>5; and similarly, ifLx5Ly
>5. Considering next the strips of the sqd lattice that are
cyclic, i.e., have (FBCy ,PBCx) boundary conditions, we
have

3~n22!2e52LxLy13Lx

26 for sqd , ~FBCy ,PBCx!. ~1.12!

2These BC’s can all be implemented in a manner that is unifo
in the lengthLx ; the case~vii ! (TPBCy ,TPBCx) with the topology
of the projective plane requires different identifications asLx varies
and will not be considered here.
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PRE 62 4653GROUND-STATE ENTROPY OF THE POTTS . . .
Hence, 3(n22)2e,0 for all Lx if Ly>3, so that these
strips are nonplanar. For the strips with (PBCy ,PBCx), i.e.,
torus boundary conditions, we have

3~n22!2e52~LxLy16! for sqd , ~PBCy ,PBCx!
~1.13!

so that these strips are also nonplanar. This can be see
ternatively by observing that each vertex on the torus st
has degreeD58 and applying the second theorem cit
above. The second theorem also shows that the sqd strip with
Klein bottle boundary conditions is nonplanar.

A generic form for chromatic polynomials for recursive
defined families of graphs, of which strip graphsGs are spe-
cial cases, is

P@~Gs!m ,q#5 (
j 51

NGs ,l

CGs , j~q!@lGs , j~q!#m, ~1.14!

wherecGs , j (q) and theNGs ,l termslGs , j (q) depend on the

type of strip graphGs , as indicated, but are independent
m.

II. STRIPS WITH „FBCy ,FBCx…

A. L yÄ2

The chromatic polynomial for the strip of the sqd lattice
with Ly51 and free transverse and longitudinal bound
conditions was given above in Eq.~1.3!. For theLy52 case
the chromatic polynomial is

P@sqd~Ly52!m ,FBCy ,FBCx ,q#

5q~q21!@~q22!~q23!#m11. ~2.1!

In the m→` limit,

W@sqd~Ly52!,FBCy ,FBCx,q#5@~q22!~q23!#1/2.
~2.2!

with B5B.

B. L yÄ3

For theLy53 strip, we use the same generating functi
method as we have before@29,30,35#. In general, for the
family of strip graphs Gs , the generating function
G(Gs ,q,x) is a rational function of the form

G~Gs ,q,x!5
N~Gs ,q,x!

D~Gs ,q,x!
~2.3!

with

N~Gs ,q,x!5(
j 50

dN
AGs , j~q!xj ~2.4!

and

D~Gs ,q,x!511(
j 51

dD
bGs , j~q!xj , ~2.5!
al-
s

y

where theAGs,i
andbGs,i

are polynomials inq ~with no com-
mon factors! and

dN5degx~N! ~2.6!

and

dD5degx~D!. ~2.7!

This generating function yields the chromatic polynomia
via the Taylor-series expansion in the auxiliary variablex:

G~Gs ,q,x!5 (
m50

`

P@~Gs!m ,q#xm, ~2.8!

where we follow the notational convention in Ref.@29#, ac-
cording to which a strip is considered to be comprised om
repetitions of a basic subgraph unitH connected to an initial
subgraphI; here we takeI 5H so that a strip with a given
value ofm hasm11 columns ofK4’s andm12 vertices in
the longitudinal direction. The denominator can be written
factorized form as

DGs
5)

j 51

dD
~12lGs , j x!. ~2.9!

These are thelGs, j
’s in Eq. ~1.14!; the coefficients are deter

mined by Eqs.~2.14! or ~2.19! in Ref. @30#.
For Ly53, we finddD52, dN51, and

G@sqd~Ly53!,FBCy ,FBCx ,q,x#

5
q~q21!~q22!~q23!2@~q22!2~q21!~q23!x#

12~q23!~q226q111!x1~q22!~q23!3x2 .

~2.10!

The denominator can be written as

Dsqd3o5~12lsqd3o,1x!~12lsqd3o,2x!, ~2.11!

where

lsqd3o,~1,2!5
1

2
~q23!@q226q111

6~q4212q3154q22112q197!1/2#

~2.12!

and the shorthand sqd3o denotes the strip of the sqd lattice
with Ly53 and open~o! boundary conditions. From this
using the general formulas in Ref.@30#, one can write the
chromatic polynomial in the form of Eq.~1.14! ~with Nl

52). In them→` limit.

W@sqd~Ly53!,FBCy ,FBCx ,q#5~lsqd3o,1!
1/3. ~2.13!

The nonanalytic locusB is shown in Fig. 2 and is com
prised of an arc stretching between endpoints atq.1.95
11.43i and 4.0510.396i , together with the complex conju
gate arc. In agreement with the general discussion given
fore @29,30,41#, these four points are the branch points of t
square root in Eq.~2.12!. B does not intersect the realq axis,
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4654 PRE 62SHU-CHIUAN CHANG AND ROBERT SHROCK
so that noqc is defined. The regionR1 is the entireq plane,
with the exception of the arcs lying onB.

C. L yÄ4

Here we finddD54, dN53. Again using the shorthan
notation sqd4o to denote this open strip of the sqd lattice
with Ly54 we have

bsqd4o,152q4113q3268q21171q2176, ~2.14!

bsqd4o,25~q23!

3~2q5233q41219q32729q211214q2803!,

~2.15!

bsqd4o,35~q23!3~q5217q41118q32420q21770q2586!,
~2.16!

bsqd4o,452~q22!~q23!6~q24!. ~2.17!

For the functionsAsqd4,o, j in the numeratorN, it is conve-
nient to extract a common factor and thus define

Asqd4o, j5q~q21!~q22!~q23!3Āsqd4o, j . ~2.18!

Then

Āsqd4o,05~q22!2, ~2.19!

Āsqd4o,152~2q4221q3178q22113q147!, ~2.20!

Āsqd4o,252~q23!~q5214q4177q32204q21245q291!,
~2.21!

and

FIG. 2. LocusB for W for the 33` strip of the sqd lattice with
free transverse and longitudinal boundary conditions. Chromatic
ros are shown for the caseLx520 ~i.e., n560).
Āsqd4o,35~q21!2~q23!3~q24!. ~2.22!

Let us write the denominator as

Dsqd4o5)
j 51

4

~12lsqd4o, j x!. ~2.23!

Then

W5~lsqd4o, j ,max!
1/4 for qPR1 , ~2.24!

wherelsqd4o, j ,max is thelsqd4o, j in Eq. ~2.23! with maximal
magnitude in this region.

Chromatic zeros are shown in Fig. 3 forLx520, i.e.,n
580. For this great a length, these chromatic zeros giv
reasonably good approximation to the asymptotic locusB.
As is evident from this figure,B does not cross the realq
axis, so that noqc is defined.

III. STRIPS WITH †FBCy ,„T…PBCx‡

A. L yÄ2

The chromatic polynomial for theLy51 cyclic strip of
the sqd lattice was given above in Eqs.~1.5! and~1.6!. Here
we consider theLy52 strip of the sqd lattice with
(FBCy ,PBCx), i.e., cyclic, boundary conditions. For a give
value ofLx , this cyclic strip graph is identical to the corre
sponding strip with Mo¨bius boundary conditions
(FBCy ,(T)PBCx):

G~sqd ,Ly52,Lx ,FBCy ,PBCx!

5G~sqd ,Ly52,Lx ,FBCy ,TPBCx!. ~3.1!

This can be proved by calculating the adjacency matrices
the cyclic and Mo¨bius strips, which are identical.@Here the
adjacency matrix of ann-vertex graph is then3n matrix A
with Ai j equal to the number of bonds~edges! that connect
the i th and j th vertices. The adjacency matrix fully define

e-
FIG. 3. Chromatic zeros for the 43Lx strip of the sqd lattice

with free boundary conditions andLx520 ~i.e., n580).
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PRE 62 4655GROUND-STATE ENTROPY OF THE POTTS . . .
the graph.# Because of the identity of theLy52 cyclic and
Möbius strips, we shall refer to them both with the design
tion sqd(Ly52)m , FBCy , (T)PBCx . For the general cyclic-
strip of the sqd strip, with Lx>4 to avoid degenerate case
the chromatic number is given by

x~sqd ,Ly ,Lx ,FBCy ,PBCx!5H 4 if Lx is even

5 if Lx is odd
.

~3.2!

For the presentLy52 cyclic/Möbius strips, the degenerat
cases are as follows: forLx52, the strip reduces toK4 while
for Lx53 it reduces toK6 , with x(Kp)5p.

The chromatic polynomial for the cyclic strip of the sqd
lattice with Ly52 andLx[m is @20#

P@sqd$~Ly52!,FBCy ,~T!PBCx%m ,q#

5
1

2
q~q23!2m1@~q22!~q23!#m

1~q21!@2~32q!#m. ~3.3!

We determine the boundaryB to be the union of a circle
centered atq52 with radius 2 and a circle centered atq
53 with radius 1:

B:$uq22u52%ø$uq23u51%. ~3.4!

These two circles osculate~i.e., intersect with equal tangents!
at qc , where

qc@sqd~Ly52!,FBCy ,~T!PBCx#54. ~3.5!

In the terminology of algebraic geometry, this pointqc is
thus a tacnode.

This locus is shown in Fig. 4. The locusB separates theq
plane into three regions:~i! the outermost regionR1 , which
is the exterior of the larger circle,uq22u>2 and which thus
includes the real intervalsq>4 and q<0, ~ii ! region R2 ,
which is the interior of the smaller circle,uq23u<1 and
includes the real interval 2<q<4, and~iii ! regionR3 , which
is the interior of the larger circleuq22u<2 minus the
smaller diskuq23u51 and includes the real interval 0<q
<2. Thus,B crosses the realq axis atq50,2,4 andqc54.
As is evident in Fig. 4, the chromatic zeros lie near to
asymptotic locusB. In the various regions

W5@~q22!~q23!#1/2 for qPR1 , ~3.6!

uWu521/2 for qPR2 , ~3.7!

uWu5u2~q23!u1/2 for qPR3 ~3.8!

~for q in regions other thanR1 , only the magnitudeuW(q)u
can be determined unambiguously!.

We define the sum of the coefficients as

C~G!5(
j 51

NlG

cG, j . ~3.9!

For sufficiently large positive integerq, the coefficientcG, j
in Eq. ~3.9! can be interpreted as the multiplicity of the co
-

e

responding eigenvaluelG, j of the coloring matrix, i.e., the
dimension of the corresponding invariant subspace in the
space of coloring configurations@15,24,38#. We recall that
the coloring matrix can be defined as the matrix whosei,j
element is 1~0! if the coloring configurations on two adja
cent transverse slices of the strip are compatible~incompat-
ible!. Thus, in the absence of zero eigenvalues of the co
ing matrix, C(G) is the dimension of the space of colorin
configurations of such a transverse slice. For the cyclic s
graphs of the sqd lattice, the transverse slice is the line gra
Ln of lengthLy vertices, so the space of coloring configur
tions of this transverse slice is

P~Ln ,q!5P~Tn ,q!5q~q21!n21. ~3.10!

In case where the cyclic strip and the Mo¨bius strip of the sqd
lattice are identical, the full coloring matrix automatical
takes account of both contributions, so that for each in
vidual strip, corresponding to a given permutation in t
identification of vertices at the longitudinal boundary, o
must divide by the symmetry factor. In the present case,Ly
52 and there are two permutations of the identifications
the boundary conditions that give identical strip graphs,
that this symmetry factor is 1/2! so that

C~sqd ,Ly52,FBCy ,PBCx!5C~sqd ,Ly52,FBCy ,TPBCx!

5
1

2
q~q21!. ~3.11!

This agrees with the sum of the coefficients in the express
~3.3!. A remark that will be relevant later is that if the co
oring matrix has a zero eigenvalue of multiplicityczero, then,
since this eigenvalue does not appear in Eq.~1.14!, the sum
of the coefficients that do appear in the chromatic polyn

FIG. 4. LocusB for W for the 23` cyclic or Möbius strip of
the sqd lattice. Chromatic zeros are shown for the caseLx520 ~i.e.,
n540).
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mial ~1.14! is equal to the full dimension of the space
coloring configurations minusczero.

B. L yÄ3

We have calculated the chromatic polynomial for the n
wider cyclic strip, withLy53. For this strip the chromatic
numbersx are the same as for theLy52sqd strip. We find
Nsqd,Ly53,cyc,l516 and

P@sqd$~Ly53!,FBCy ,PBCx%m ,q#5(
j 51

16

csqd3c , j~lsqd3c , j !
m.

~3.12!

~The termslsqd3c, j are the same for cyclic and Mo¨bius lon-

gitudinal boundary conditions.! With the lsqd3c, j ’s ordered
according to decreasing degrees of their coefficients for
cyclic strip, we find

lsqd3c,151, ~3.13!

lsqd3c,2522, ~3.14!

lsqd3c,3523, ~3.15!

lsqd3c,45q23, ~3.16!

lsdd3c,552~q23!, ~3.17!

and

lsqd3c,~6,7!5q246A2q2214q125. ~3.18!

The termslsqd3c, j , j 58,9,10 are the roots of the cubic equ
tion

j324~q24!j21~q2210q117!j12~q21!~q23!.
~3.19!

For j 511 we have

lsqd3c,1152~q23!2. ~3.20!

The termslsqd3c, j , j 512, 13 and 14 are the roots of th
cubic equation

j31~2q2215q130!j22~q23!2~q225q15!

3j22~q23!4. ~3.21!

Finally,

lsqd3c,~15,16!5lsqd3o,~1,2! . ~3.22!

For the coefficients we calculate

csqd3c,15
1

6
~q21!~q22!~q23!, ~3.23!

csqd3c,25
1

3
~q22!~q24!, ~3.24!
t

e

csqd3c,35
1

6
q~q21!~q25!, ~3.25!

csqd3c, j5
1

2
q~q23! for j 54,8,9,10, ~3.26!

csqd3c, j5
1

2
~q21!~q22! for j 55,6,7, ~3.27!

csqd3c, j5q21 for j 511,12,13,14, ~3.28!

and

csqd3c, j51 for j 515,16. ~3.29!

Summing the coefficientscsqd3c, j , we find

C@sqd~Ly53!,FBCy ,PBCx#5
1

6
q~q11!~4q27!.

~3.30!

Since forLy53 the cyclic and Mo¨bius strips of the sqd lat-
tice are distinct, the full sum of eigenvalue multiplicities
equal to Eq.~3.10! with n5Ly53 ~without dividing by any
symmetry factor!. The sum of the coefficients appearing
Eq. ~3.12! is less than this quantity,q(q21)2, by the amount

csqd3c,zero5
1

6
q~2q229q113!, ~3.31!

which indicates that for this strip the coloring matrix has
zero eigenvalue with this multiplicity.

The boundaryB is shown in Fig. 5. This boundary sepa

FIG. 5. LocusB for W for the 33` cyclic or Möbius strip of
the sqd lattice. Chromatic zeros are shown for the caseLx520 ~i.e.,
n560).
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rates theq plane into four regions. These include~i! the
outermost regionR1 , which contains the semi-infinite inter
vals q.qc andq,0, whereqc is

qc@sqd~Ly53!,FBCy ,PBCx#54.254654... ~3.32!

~a root of the equationq4214q3172q22168q116250),
~ii ! a narrow crescent-shaped regionR2 containing the real
interval 4<q<qc , ~iii ! the regionR3 containing the real
interval 2<q<4, and~iv! the regionR4 containing the real
interval 0<q<2. Associated with these regions are tw
complex-conjugate pairs of triple points, as is evident in F
5. Note thatqc is not a tacnode for the (Lx→` limit of the!
Ly53 cyclic strip, in contrast to the situation for the corr
spondingLy52 cyclic strip.

In the various regions

W5~lsqd3c,15!
1/3 for qPR1 , ~3.33!

uWu531/3 for qPR2 , ~3.34!

and

uWu5ulsqd3c,810mu1/3 for qPR3 , ~3.35!

where lsqd3c,810m denotes the root of the cubic~3.19! of

maximal magnitude inR3 , and

uWu5ulsqd3c,1214mu1/3 for qPR4 , ~3.36!

where lsqd3c,1214m denotes the root of the cubic~3.21! of

maximal magnitude inR4 .

IV. STRIPS WITH „PBCy ,FBCx…

A. L yÄ3

For theLy53, Lx5m12 strip of K4’s forming squares,
with (PBCy ,FBCx) boundary conditions@for which n
53(m12)# we find

P@sqd~Ly53!m ,PBCy ,FBCx ,q#

5q~q21!~q22!@~q23!~q24!~q25!#m11,

~4.1!

where

W@sqd~Ly53!,PBCy ,FBCx ,q#5@~q23!~q24!~q25!#1/3.
~4.2!

The continuous nonanalytic locusB5B; W has isolated
branch point singularities where it vanishes atq53, 4, and 5.
Aside from these,R1 is the full q plane.

B. L yÄ4

For this case it is again convenient to give our results
terms of a generating function G @sqd(Ly
54),PBCy ,FBCx ,q,x#. We find dD53, dN52, and~using
the abbreviation sqd4cyl for this strip!

bsqd4cyl,152q4116q32104q21316q2372, ~4.3!
.

n

bsqd4cyl,25~q23!~5q4274q31422q221100q11109!,
~4.4!

and

bsqd4cyl,352~q22!~q23!2~2q2216q133!. ~4.5!

Defining

Asqd4cyl,j5q~q21!~q22!~q23!Āsqd4cyl,j ~4.6!

we calculate

Āsqd4cyl,05q4214q3179q22210q1220, ~4.7!

Āsqd4cyl,152~5q5279q41501q321586q212485q21513!
~4.8!

and

Āsqd4cyl,25~q23!~q223q13!~2q2216q133!. ~4.9!

Writing

Dsqd4cyl5)
j 51

3

~12lsqd4cyl,j x! ~4.10!

we have

W5~lsqd4cyl,j ,max!
1/4 for qPR1 , ~4.11!

wherelsqd4cyl,j ,max is the lsqd4cyl,j in Eq. ~4.10! with maxi-
mal magnitude in this region.

Chromatic zeros for the 43Lx strip of the sqd lattice with
cylindrical boundary conditions are shown in Fig. 6 forLx
520, i.e.,n580. Again, the lengthLx is sufficiently great
that these give a good idea of the location of the asympt
curveB. SinceB does not cross the realq axis, there is noqc
for this case.

V. STRIP WITH L yÄ3 AND †PBCy ,„T…PBCx‡

We consider here the sqd strip with Ly53 and torus
boundary conditions (PBCy ,PBCx). By the same method a
mentioned above, e.g., calculating the associated adjac
matrices and showing that they are the same, it follows t
for a givenLx , this strip with torus boundary conditions i
identical to the correspondingLy53 strip with Klein bottle
boundary conditions (PBCy ,TPBCx):

G~sqd ,Ly53,Lx ,PBCy ,PBCx!

5G~sqd ,Ly53,Lx ,PBCy ,TPBCx!. ~5.1!

Since there are 3 vertices on the vertical slice, and henc
permutations that yield identical graphs, it follows, as e
plained above, that the sum of the eigenvalue multiplicit
for each individual strip contributes only 1/3! of this total:
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C@sqd ,Ly53,PBCy ,~T!PBCx#

5
1

3!
P~C3 ,q!5

1

6
q~q21!~q22!. ~5.2!

These strips have the chromatic number

x@sqd~Ly53!m ,PBCy ,~T!PBCx#5H 6 for even m>4

7 for odd m>7
.

~5.3!

For m52 andm53, theLy53 sqd torus strip degenerates t
K6 and K9 , respectively, withx(Kp)5p as before; form
55 this strip hasx58. The fact that the values ofx for the
Ly53 torus strip of the sqd lattice in Eq.~5.3! and the specia
cases noted are larger than the valuex54 for the infinite 2D
sqd lattice can be ascribed in part to the constraints aris
from the small girth of the triangular transverse cross sec
of these strips.

We calculate the chromatic polynomial by iterated use
the deletion-contraction theorem, via a generating funct
approach@29,30#. From this we obtain the chromatic poly
nomial in the form~1.14! via the general formulas in Ref
@30# and obtain

P@sqd~Ly53!m ,PBCy ,~T!PBCx ,q#

5
1

6
q~q21!~q25!~26!m1

1

2
q~q23!@6~q25!#m

1~q21!@23~q24!~q25!#m

1@~q23!~q24!~q25!#m. ~5.4!

FIG. 6. Chromatic zeros for the 43Lx cylindrical strip of the
sqd lattice, i.e., with (PBCy ,FBCx) boundary conditions withLx

520 ~i.e., n580 vertices!.
g
n

f
n

Thus,Nl54 for this strip. The labeling of the coefficientscj
and termsl j in Eq. ~5.4! is consecutive. Explicitly calculat-
ing the sum of the coefficients in the chromatic polynom
~5.4!, one sees that the result agrees with Eq.~5.2!. It is
interesting that the coefficients that occur in Eq.~5.4! are the
same as a subset of the coefficients that occur in the c
matic polynomial for theLy53 cyclic strip. We find that the
degrees inx of the numerator and denominator of the gen
ating function for this strip graphs are 2 and 4, so that all
the l j ’s in dD54 contribute toP.

The nonanalytic locus~boundary! B is shown in Fig. 7
and consists of three circles that osculate atqc , where

qc@sqd~Ly53!,PBCy ,~T!PBCx#56, ~5.5!

namely,

B:$uq23u53%ø$uq24u52%ø$uq25u51%. ~5.6!

Thus, as was true for theLy52 cyclic strip,qc is a tacnode.
Evidently,B crosses the real axis atq50, 2, and 4 as well as
at qc . This locusB divides theq plane into four regions:~i!
the outermost regionR1 , including the real intervalsq>6
and q<0, ~ii ! region R2 , the interior of the smallest circle
uq55u51, containing the real interval 4<q<6, ~iii ! region
R3 , the interior of the circleuq24u52 minus the diskuq
25u51 comprisingR2 and including the real interval 2
<q<4, and~iv! regionR4 , the interior of the largest circle
uq23u53 minus the diskuq24u52 and including the rea
interval 0<q<2. We have

W5@~q23!~q24!~q25!#1/3 for qPR1 . ~5.7!

The fact that this coincides with theW calculated for the

FIG. 7. LocusB for W for the 33` strip of the sqd lattice with
@PBCy ,(T)PBCx#5torus or Klein bottle boundary conditions
Chromatic zeros are shown for the caseLx520 ~i.e., n560).
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corresponding strip with (PBCy ,FBCx) @see Eq.~4.2!# is a
general result@35,39,41#. For the other regions we have

uWu561/3 for qPR2 , ~5.8!

uWu5u6~q25!u1/3 for qPR3 , ~5.9!

and

uWu5u3~q24!~q25!u1/3 for qPR4 . ~5.10!

Evidently, for all of these strips, the locusB has support for
Re(q)>0.

It is of interest to comment further on theqc values for
~the Lx→` limits of! these strips of the sqd lattice. In our
previous exact calculations of chromatic polynomials
various strip graphs of regular lattices and the resultanW
functions for theirLx→` limits, it was found that if one use
free transverse boundary conditions and periodic longitu
nal boundary conditions, the value ofqc for a given family is
a nondecreasing function ofLy . Our results for the strips o
the sqd lattice exhibit the same behavior. Hence, our findi
that qc.4.25 for the (Lx→` limit of the! Ly53 cyclic/
Möbius strip graph suggests thatqc for the infinite 2D sqd
lattice, which we denoteqc(sqd), is greater than 4.25. Not
that we cannot use our finding thatqc56 for the Lx→`
limit of the Ly53 torus/Klein bottle graph of the sqd lattice
to suggest thatqc(sqd) might be 6 because we have prev
ously obtained exact solutions forW that show thatqc is not,
in general, a nondecreasing function ofLy on strip graphs
with periodic transverse boundary conditions@29,45#. For
example, from exact results, we have found that for theLx
→` limit of strips of the triangular lattice with cylindrica
boundary condition (PBCy ,FBCx), qc54 for Ly54 @29#,
while qc.3.28 for Ly55 andqc.3.25 for Ly56 @45#. For
the square, triangular, and sqd lattices, constructed, say, a
the Lx , Ly→` limits of open rectangular sections, one h
the chromatic numbersx52, 3, and 4, respectively. Now th
Potts antiferromagnet has a zero-temperature critical poin
q53 on the square lattice@6,17,18# and atq54 on the tri-
angular lattice@19#, respectively~which should be indepen
dent of boundary conditions used in taking the thermo
namic limit!, corresponding to the valuesqc(sq)53 and
qc(tri) 54. These results are consistent with the possibi
that qc(sqd)55, i.e., the possibility that theq55 Potts anti-
ferromagnet has aT50 critical point on the sqd lattice.
However, there is not a 1-1 correspondence between c
matic number andqc ; for example, the Kagome´ lattice
~again constructed, say, as the limit of a finite section w
free transverse and longitudinal boundary conditions! hasx
53 like the triangular lattice, butqc53, in contrast to the
qc54 value for the triangular lattice. If, indeed,qc(sqd)
55, this would also mean thatqc for an infinite-length,
finite-width strip could be larger thanqc for the full infinite
lattice since we have obtainedqc56 in Eq. ~5.5! from our
r

i-

at

-

y

o-

h

exact solution for the chromatic polynomial for the strip wi
torus boundary conditions above.

VI. RIGOROUS LOWER BOUNDS ON W AND APPROACH
TO THE INFINITE-WIDTH LIMIT

Here we present rigorous lower bounds onW for strip
graphs and show that these are very close to the actual va
obtained from our exact solutions and hence serve as
good approximations to the actualW functions. Using our
exact solutions and these approximations, we then determ
how, for a givenq, the values ofW for the infinite-length,
finite-width strips approach the value for the infinite 2D sd
lattice as the strip widthLy gets large.

As discussed in Refs.@39# and@41#, a general result for a
given type of strip graphGs is

W@Gs~Ly!,BCy ,FBCx,q#

5W@Gs~Ly!,BCy ,PBCx ,q#

for q>qc@Gs~Ly!,BCy ,PBCx#, ~6.1!

where BCy5FBCy or PBCy . Hence, for example,
W @sqd(Ly 5 2) ,FBCy , FBCx ,q# 5 W @sqd(Ly 5 2) , FBCy ,
PBCx ,q# for q>4 and

W@sqd~Ly53!,PBCy ,FBCx ,q#

5W@sqd~Ly53!,PBCy ,PBCx ,q# for q>6.

~6.2!

We recall that, using coloring matrix methods@15#, Tsai
and one of us~R.S.! previously derived rigorous upper an
lower bounds onW for various 2D lattices@24–26#. It was
found that the lower boundsWlb were actually very good
approximations to the actualW values, as determined, e.g
by Monte Carlo simulations. This was also seen analytica
from the property that the large-q Taylor series expansions o
q21W and q21Wlb coincided to several orders beyond th
first term, which is unity. The lower bound~1.9! was derived
as part of this paper. As noted above, this bound agrees
well with the actual values ofW, as determined via Monte
Carlo measurements~see Table III of@25#!.

Using the same methods, we can obtain a lower bound
W for the sqd strips of interest here. Here we restrict toq
>6. For the case of free transverse boundary conditions
either free or periodic longitudinal boundary conditions w
obtain the lower bound

W@sqd~Ly!,FBCy ,BCx ,q#>
@~q22!~q23!#121/Ly

~q21!122/Ly
.

~6.3!

For the sqd strips with periodic transverse boundary cond
tions and either free or periodic longitudinal boundary co
ditions, we obtain the lower bound

W@sqd~Ly!,PBCy ,BCx ,q#>A1/Ly, ~6.4!

where
A5
~q/2!~q23!2Ly1@~q22!~q23!#Ly1~q21!@2~32q!#Ly

~q21!Ly1~q21!~21!Ly
. ~6.5!
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Evidently, for largeq, the lower bound~6.4! with Eq. ~6.5!
goes over to Eq.~1.9! for the infinite lattice.

In Table I, we compare the values ofW for 6<q<10
from exact solutions for theLy52,3,4 open strips with the
respective lower bound~1.9!. For each pair of values ofLy
and q, the upper entry is the value ofW from the exact
solution and the lower entry is the ratio

RWF5
W@sqd~Ly!,FBCy ,BCx ,q#

W@sqd~Ly!,FBCy ,BCx ,q# lb
, ~6.6!

where W@sqd(Ly),FBCy ,BCx ,q# lb is the lower bound~lb!
given by the right-hand side of Eq.~6.3! and the numerato
and denominator are independent of the boundary condit
in the longitudinal direction. The bound is identical to th
exact expression forW for Ly52 and is very close forLy
53 andLy54. Thus, just as was found in our earlier wo
with Tsai @24–26#, the lower bound is not just a bound b
also a very accurate approximation to the exact value ofW,
especially for moderate and largeq. Having confirmed this
again for the present type of strip graphs, we use this
proximation to study the approach to the infinite-width lim
i.e., the full infinite 2D sqd lattice. In Table II we show
values ofW for 6<q<10 and widths 2<Ly<10, as com-
pared with the values forLy5`, i.e., for the full 2D sqd
lattice. For each pair of valuesLy andq, the upper entry is
the value ofW and the lower entry is the ratio of this valu
divided by the corresponding value ofW for the 2D sqd
lattice. ForLy52,3,4, the values ofW are from evaluations
of the exact solutions, while forLy from 5 to 10 they are
from the approximation provided by Eq.~6.3! and for Ly
5` they are from the Monte Carlo measurements given
Ref. @25#. One sees that for a fixedLy , the value ofW on the
infinite-length strip approaches that for the 2D lattice asq
increases. Clearly, for fixedq, the value ofW for the infinite-
length strip approaches the value for the 2D lattice asLy
increases, and Table II provides a quantitative picture of
approach; for example, forLy510 and a moderate value ofq
such as 7 or 8, theW values are within several percent
their 2D lattice values. We recall that this approach for t
type of strip with free transverse boundary conditions w
proved to be monotonic in Ref.@31#.

We next study the approach of the values ofW on strips
of the sqd lattice with periodic transverse boundary cond
tions to their values for the infinite 2D sqd lattice. In Table

TABLE I. Values ofW for infinite-length, finite-width strips of
the sqd lattice with free transverse boundary conditions, as functi
of q, from evaluation of our exact solutions. For each pair of valu
of Ly and q, the upper entry is the value ofW from the exact
solution and the lower entry is the ratioRWF .

Ly

q
6 7 8 9 10

2 3.464 4.472 5.477 6.481 7.483
1 1 1 1 1

3 3.083 4.066 5.055 6.047 7.0415
1.006 1.003 1.002 1.001 1.001

4 2.909 3.878 4.857 5.842 6.831
1.009 1.004 1.002 1.0015 1.001
ns

p-

n
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s
s

III, we compare the values ofW for 6<q<10 from our exact
solutions for theLy53,4 cylindrical strips with the respec
tive lower bound~6.4! with Eq. ~6.5!. For each pair of values
of Ly andq, the upper entry is the value ofW from the exact
solution and the lower entry is the ratio

RWP5
W@sqd~Ly!,PBCy ,BCx ,q#

W@sqd~Ly!,PBCy ,BCx ,q# lb
, ~6.7!

where W@sqd(Ly),PBCy ,BCx ,q# lb is the lower bound~lb!
given by the right-hand side of Eq.~6.4! with Eq. ~6.5! and
the numerator and denominator are independent of
boundary conditions in the longitudinal direction. The bou
is identical to the exact expression forW for Ly53 and is

s
s

TABLE II. Values of W for infinite-length, widthLy strips of
the sqd lattice with (FBCy ,BCx), as functions ofq, compared with
the corresponding values for the infinite 2D sqd lattice. For each
value ofLy andq, the upper entry is the value ofW and the lower
entry is the ratio of this value divided byW(sqd ,q) for the 2D sqd
lattice. For Ly52,3,4, the values ofW are taken from the exac
solutions; for 5<Ly<10 the values are from Eq.~6.3!.

Ly

q
6 7 8 9 10

2 3.46 4.47 5.48 6.48 7.48
1.42 1.33 1.27 1.23 1.20

3 3.08 4.07 5.055 6.05 7.04
1.26 1.21 1.17 1.15 1.13

4 2.91 3.88 4.86 5.84 6.83
1.19 1.15 1.13 1.11 1.10

5 2.78 3.75 4.73 5.71 6.70
1.14 1.11 1.10 1.08 1.07

6 2.71 3.68 4.65 5.63 6.62
1.11 1.09 1.08 1.07 1.06

7 2.665 3.625 4.60 5.58 6.56
1.09 1.08 1.07 1.06 1.05

8 2.63 3.59 4.56 5.53 6.52
1.075 1.07 1.06 1.05 1.04

9 2.60 3.56 4.53 5.50 6.48
1.06 1.06 1.05 1.04 1.04

10 2.58 3.535 4.50 5.48 6.46
1.06 1.05 1.04 1.04 1.04

` 2.45 3.37 4.31 5.27 6.24
1 1 1 1 1

TABLE III. Values of W for infinite-length, finite-width strips
of the sqd lattice with periodic transverse boundary conditions,
functions ofq, from evaluation of our exact solutions. For each p
of values ofLy and q, the upper entry is the value ofW from the
exact solution and the lower entry is the ratioRWP .

Ly

q
6 7 8 9 10

3 1.817 2.8845 3.915 4.932 5.944
1 1 1 1 1

4 2.629 3.5005 4.412 5.348 6.300
1.024 1.014 1.009 1.006 1.004
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very close forLy54. Hence, as was the case for the op
strip of the sqd lattice, the lower bound is not just a boun
but also a very accurate approximation to the exact valu
W, especially for moderate and largeq. Having established
this, we use this approximation to study the approach to
infinite-width limit, i.e., the full infinite 2D sqd lattice. In
Table IV we show values ofW for 6<q<10 and widths 3
<Ly<10, as compared with the values forLy5`, i.e., for
the full 2D sqd lattice. For each pair of valuesLy andq, the
upper entry is the value ofW for the infinite cylindrical or
torus strip and the lower entry is the ratio of this value
vided by the corresponding value ofW for the 2D sqd lattice.
For Ly53,4, the values ofW are from evaluations of the
exact solutions, while forLy from 5 to 10 they are from the
approximation provided by bound~6.4! with ~6.5! and for
Ly5` they are from the Monte Carlo measurements given
Ref. @25#. One sees that for a fixedLy , the value ofW on the
infinite-length strip approaches that for the 2D lattice asq
increases. Also, for fixedq, the value ofW for the infinite-
length strip approaches the value for the 2D lattice asLy
increases. In Ref.@31# it was shown that this approach
nonmonotonic for strips of the square and triangular latt
with periodic transverse boundary conditions and the sam
true here. The approach of the values ofW for the infinite-
length finite-width strips to their respective values for t
infinite sqd lattice is more rapid for the case of periodic tran
verse boundary conditions than free transverse boun
conditions. This is similar to what was found in Ref.@31# and
is due to the fact that periodic transverse boundary co
tions minimize finite-size artifacts. Quantitatively, for a mo

TABLE IV. Values of W for infinite-length, widthLy strips of
the sqd lattice with (PBCy ,BCx), as functions ofq, compared with
the corresponding values for the infinite 2D sqd lattice. For each
value ofLy andq, the upper entry is the value ofW and the lower
entry is the ratio of this value divided byW(sqd ,q) for the 2D sqd
lattice. ForLy53,4, the values ofW are taken from the exact solu
tions; for 5<Ly<10 the values are from Eq.~6.4! with Eq. ~6.5!.

Ly

q
6 7 8 9 10

3 1.82 2.88 3.91 4.93 5.94
0.743 0.857 0.908 0.936 0.953

4 2.63 3.50 4.41 5.35 6.30
1.07 1.04 1.02 1.015 1.01

5 2.32 3.29 4.26 5.23 6.21
0.949 0.978 0.989 0.994 0.996

6 2.43 3.35 4.29 5.25 6.22
0.994 0.994 0.996 0.997 0.998

7 2.39 3.33 4.28 5.25 6.22
0.976 0.989 0.994 0.996 0.998

8 2.41 3.33 4.29 5.25 6.22
0.984 0.991 0.995 0.997 0.998

9 2.40 3.33 4.29 5.25 6.22
0.980 0.990 0.994 0.997 0.998

10 2.40 3.33 4.29 5.25 6.22
0.982 0.990 0.995 0.997 0.998

` 2.45 3.37 4.31 5.27 6.24
1 1 1 1 1
n

of

e

-

n

e
is

-
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erate value of the width, such asLy56, and q;8, W is
already within a few parts per thousand of its infinite 2
lattice value.

One can also compare the results forW with those on the
square and triangular lattices; this comparison shows the
fect of the addition of a single diagonal bond to each squ
to go from the square to the triangular lattice, and then
addition of a second opposite diagonal bond to each sq
to go from the triangular to sqd lattice. This was done before
in Refs.@12,24# and @25#.

VII. ZERO-TEMPERATURE CRITICAL POINTS

We summarize some of the results obtained in this pa
in Table V. Note that theLy51 strips of the sqd lattice are
equivalent toLy52 strips of the triangular lattice, as dis
cussed above. At the value ofq where the nonanalytic locu
B crosses the positive real axis, theq-state Potts antiferro-
magnet has a zero-temperature critical point@41,44,45#.
From the exact solutions for the chromatic polynomials a
W functions, we thus conclude that theq52 Potts~Ising!
antiferromagnet has aT50 critical point on theLx→` lim-
its of the cyclic/Möbius strips withLy52 andLy53 as well
as the Ly53 strip with torus ~equivalently Klein bottle!
boundary conditions. Note that this involves frustration o
ing to the nonbipartite nature of these graphs. As is gen
for a T50 critical point, the critical singularities are esse
tial, rather than algebraic singularities, as we have verifi
from an explicit transfer-matrix calculation. The use of str
graphs with periodic or twisted periodic longitudinal boun

TABLE V. Properties ofP, W, andB for strip graphsGs of the
sqd lattice. The properties apply for a given strip of typeGs of size
Ly3Lx ; some apply for arbitraryLx , such asNl , while others
apply for the infinite-length limit, such as the properties of the loc
B. For the boundary conditions in they and x directions
(BCy ,BCx), F, P, and T denote free, periodic, and orientatio
reversed~twisted! periodic, and the notation~T!P means that the
results apply for either periodic or orientation-reversed period
The column denoted Eqs. describe the numbers and degrees o
algebraic equations giving thelGs , j ; for example$6~1!, 2~2!, 2~3!%

means that there are six linear equations, two quadratic equa
and two cubic equations. The column denoted BCR lists the po
at whichB crosses the realq axis; the largest of these isqc for the
given familyGs . The notation ‘‘none’’ in this column indicates tha
B does not cross the realq axis. The column labeled ‘‘SN’’ refers
to whetherB has support for negative Re(q), indicated as yes~y! or
no ~n!.

Ly BCy BCx Nl Eqs. BCR SN

1 F F 1 $1~1!% none n
2 F F 1 $1~1!% none n
3 F F 2 $1~2!% none n
4 F F 4 $1~4!% none n
1 F ~T!P 4 $2~1!,1~2!% 0, 2, 3 n
2 F ~T!P 3 $3~1!% 0, 2, 4 n
3 F ~T!P 16 $6~1!,2~2!,2~3!% 0, 2, 4, 4.25 n
3 P F 1 $1~1!% none n
4 P F 3 $1~3!% none n
3 P ~T!P 4 $4~1!% 0, 2, 4, 6 n
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ary conditions is useful since the crossings ofB on the realq
axis signal the presence ofT50 critical points for the Potts
antiferromagnet at these values ofq. Just as was the cas
with the square and triangular strips, for which the Isi
antiferromagnet also has aT50 critical point@35,41,44,45#,
if one uses free longitudinal boundary conditions,B does
not, in general, cross the positive real axis atq52. This
difference is associated with the noncommutativity in t
definition of W, as discussed before@12,41,44,45#. We also
find, for both the cyclic/Mo¨bius strips and the torus/Klein
bottle strips for which we have calculated exact solutions
W, in the nondegenerate casesLy>2, that theq-state Potts
antiferromagnet has aT50 critical point atq54. Since the
Lx→` limit of the cyclic/Möbius strips can be carried ou
with increasing even values ofLx , for which the chromatic
number is 4, this zero-temperature critical point is unfru
trated for these strips. In contrast, for theLx→` limit of the
torus/Klein bottle strip, since min(x)56, it is frustrated. Fi-
nally, there is formally a similar critical point atq50.

VIII. CONCLUSIONS

In this paper we have presented exact calculations of
zero-temperature partition function~chromatic polynomial!
andW(q), the exponent of the ground-state entropy, for
q-state Potts antiferromagnet with next-nearest-neigh
spin-spin couplings on strips of the square lattice str
~equivalently, the nearest-neighbor Potts model on strip
the sqd lattice! with width Ly53 and Ly54 vertices and
arbitrarily great lengthLx vertices. Both free and periodi
boundary conditions are considered. In theLx→` limit, the
resultantW function was calculated. By comparing the va
ues of the exactW functions thus obtained for strips wit
various widths and boundary conditions versus numer
measurements ofW for the full 2D sqd lattice, we evaluated
the effects of the next-neighbor spin-spin couplings. W
showed that theq52 ~Ising! and q54 Potts antiferromag-
nets have zero-temperature critical points on theLx→` lim-
its of the strips that we studied. With the generalization oq
from Z1 to C, we also determined the analytic structure
W(q) in the q plane.
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APPENDIX

A. A reduction theorem

Consider a strip of a given width and length, made up
squares such that the four vertices of each square are
nected to form a complete graphKr ~so that there arer 24
vertices outside of the strip! with some set of boundary con
ditions ~BC!. We shall denote this strip temporarily a
Gsq,kr ,BC. We first show that the chromatic polynomial fo
this graph can easily be expressed in terms of the chrom
polynomial for the corresponding graph with the vertices
each square forming aK4 , i.e., such that the two diagonall
opposite vertices of each square are connected by an e
r

-

e

e
or
s
of

al

e

f

k
n

f
n-

tic
f

ge.

For this purpose we use the intersection theorem from gr
theory; this states that a graphG can be expressed as th
union of two subgraphsG5G1øG2 such that the intersec
tion of these subgraphs is a complete graph,G1ùG25K j for
somej, thenP(G,q)5P(G1 ,q)P(G2 ,q)/P(K j ,q). Apply-
ing this theorem to each square of the above strip, we h

P~Gsq,Kr ,BC,q!5S q~r !

q~4!D N4

P~Gsq,K4 ,BC,q!

5F )
j 54

r 21

~q2 j !GN4

P~Gsq,K4 ,BC,q! ~A1!

whereN4 denotes the number of squares on the strip and
use the standard notation from combinatorics for the ‘‘falli
factorial,’’

q~s![)
j 50

s21

~q2 j !. ~A2!

Our results in the text thus also apply to lattices comprised
squares such that the four vertices of each square formKr
with r .4.

B. „Kr ,Ks… Strips

We discuss here a strip oftKr subgraphs, connected suc
that successiveKr subgraphs intersect on aKs subgraph,
with 1<s<r 21, with some longitudinal boundary cond
tions imposed. A member of this general family may be
beled as (Kr ,Ks ,t,BCx). Two of the simplest longitudina
boundary conditions to impose are free and cyclic, which
shall denote as FBCx and PBCx . The general (Kr , Ks , t
5m, FBCx) graph hasn5(r 2s)m1s vertices.

One simple set of families is the cyclic strip (Kr , K1 , t
5m, PBCx). These may think of these graphs as bei
formed by starting with a circuit graph,Cm and gluing to
each edge one edge of a complete graphKr . For these we
find

P@~Kr ,K1 ,m,PBCx!,q#5S q~r !

q~2!D P~Cm ,q!

5F )
j 52

r 21

~q2 j !Gm

P~Cm ,q!,

~A3!

whereP(Cm ,q) is the chromatic polynomial for the circui
graph withm vertices, given in the introduction.

Another interesting family is the open stri
(Kr ,Ks ,m,FBCx). We calculate

P@~Kr ,Ks ,m,FBCx!,q#5q~s!S q~r !

q~s!D m

5q~s!F )
j 5s

r 21

~q2 j !Gm

.

~A4!

Hence, in them→` limit,
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W5S q~r !

q~s!D 1/~r 2s!

5F )
j 5s

r 21

~q2 j !G1/~r 2s!

~A5!

andB5B.
Other cases are more complicated. For a strip ofK3’s, i.e.,

triangles, in addition to free and periodic~cyclic! boundary
conditions, one also has the possibility of twisted perio
boundary conditions, which form a Mo¨bius strip. The chro-
matic polynomial for the (K3 ,K2 ,t,PBCx) strip for event
was given in Ref.@35# ~see also Ref.@38#!; in this case, the
strip can be regarded as being formed from a strip ofm
squares with a bond added to each square connecting
lower-left to upper-right vertex of the square, so thatt
52m. The chromatic polynomial for the corresponding M¨-
bius strip, (K3 ,K2 ,t,TPBCx) with event was also given in
Ref. @35#. For thet→` limit, the W function and associated
nonanalytic locusB were given in Ref.@35#. The chromatic
polynomials for the corresponding strip with oddt, viz.,
(K3 ,K2 ,t,PBCx) and (K3 ,K2 ,t,TPBCx), were given in Ref.
@45#; the t→` functionW and locusB are the same for both
the cyclic and Mo¨bius strips ast increases through even o
odd values.

In the text we have considered strips in which each squ
forms aK4 subgraph. There are actually different classes
strips with t repeatedK4 subgraphs, in the notation intro
duced above. An illustration of these is given in Fig. 8.

As an example, we calculate

P@~K4 ,K2 ,t,BCx!,q#5~q23! tP@~K3 ,K2 ,t,BCx!,q#,
~A6!

where BCx5PBCx or TPBCx , respectively, and the

FIG. 8. Illustrative strip graph comprised ofK4 subgraphs inter-
secting on common edges (K2’s!, of a type different than that
shown in Fig. 1~a!.
l

c

the

re
f

(K3 ,K2 ,t,PBCx) and (K3 ,K2 ,t,TPBCx) strips are the cyclic
and Möbius triangular-lattice strips mentioned above. Th
explicitly, for event52m,

P@~K4 ,K2 ,t52m,PBCx!,q#

5~q23!2m@~q223q11!1@~q22!2#m

1~q21!@~l t2,3!
m1~l t2,4!

m##, ~A7!

P@~K4 ,K2 ,t52m,TPBCx!,q#

5~q23!2mF211@~q22!2#m

2~q21!~q23!
@~l t,2,3!

m2~l t2,4!
m#

l t2,32l t2,4
G ,

~A8!

wherel t2,j , j 53,4, were defined in Eqs.~1.7! above.
For the case of oddt52m11, we have

P@~K4 ,K2 ,t52m11,PBCx!,q#

5~q23!2m11F2~q223q11!1~q22!@~q22!2#m

1
1

2
~q21!~q23!H @~l t2,3!

m1~l t2,4!
m#

1
@~l t2,3!

m2~l t2,4!
m#

l t2,32l t2,4
J G , ~A9!

P@~K4 ,K2 ,t52m11,TPBCx!,q#

5~q23!2m11H 11~q22!@~q22!2#m1
1

2
~12q!

3F @~l t2,3!
m1~l t2,4!

m#

1~924q!
@~l t2,3!

m2~l t2,4!
m#

l t2,32l t2,4
G J . ~A10!
b.
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