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Ground-state entropy of the Potts antiferromagnet with next-nearest-neighbor spin-spin
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We present exact calculations of the zero-temperature partition furictimomatic polynomialandW(q),
the exponent of the ground-state entropy, for thstate Potts antiferromagnet with next-nearest-neighbor
spin-spin couplings on square lattice strips, of witl{fx 3 andL,=4 vertices and arbitrarily great length
vertices, with both free and periodic boundary conditions. The resultant valldSafa range of physica
values are compared with each other and with the values for the full two-dimensional lattice. These results give
insight into the effect of such nonnearest-neighbor couplings on the ground-state entropy. We show that the
g=2 (Ising) andgq=4 Potts antiferromagnets have zero-temperature critical points dntheo limits of the
strips that we study. With the generalizationgpfrom 7, to C, we determine the analytic structure \&fq)
in the q plane for the various cases.

PACS numbes): 05.20-y, 64.60.Cn, 75.10.Hk

I. INTRODUCTION W({G},q)= lim P(G,q)l/”, (1.2
n—o
The g-state Potts antiferromagnet with the usual nearest- ) .
neighbor spin-spin couplingd,2] exhibits nonzero ground- Wheren=v(G) is the number of vertices 06 and {G}
state entropy,S,>0 (without frustration for sufficiently ~— =liMn_G. _ . _
largeq on a given lattice\. This is equivalent to a ground-  SinceP(G,q) is a polynomial, one can generaligdrom
state degeneracy per si>1, since Sy=kgInW. Such %+ to C. The zeros of?(G,q) in the complexq plane are
nonzero ground-state entropy is important as an exception tg@lled chromatic zeros; a subset of these may form an accu-
the third law of thermodynamidi3,4]. A physical example mulation set in then—oo limit, denoted B, which is the
of nonzero ground-state entropy is ice-7]. In this q state, ~continuous locus of points whel({G},q) is nonanalytic.
Potts antiferromagnet dt=0, the value of each spin must be The maximal region in the complexplane to which one can
different than the values of all of the other spins to which itanalytically continue the functiokV({G},q) from physical
is coupled. There is a close connection with graph theoryalues where there is nonzero ground-state entropy, is de-
here, since the zero-temperature partition function of théotedR;. The maximal value ofj where B intersects the
above-mentioned-state Potts antiferromagnet on a lattice  (Positive real axis is labeled|({G}). This value is impor-
or, more generally, a grapB, satisfies tant sinceW({G},q) is a real analytic solution for reaj
down toq.({G}). For regions other thaR,, one can only
determine the magnituddV({G},q)| unambiguously{12].
In addition to Refs[8—12], some previous works on chro-
matic polynomials include Ref§13—-45.
where P(G,q) is the chromatic polynomial expressing the  In previous works we have carried out comparative stud-
number of ways of coloring the vertices of the graphwith  jes of W for different lattices and have explored the effects of
g colors such that no two adjacent vertices have the samgifferent lattice properties such as coordination numbers
color (for reviews, see Ref$8—11]). The minimum number [12 26,29-31,34,35,39—#and[45]. In general it was found
of colors for which this coloring is possible, i.e., the mini- that as one increased the lattice coordination number, the
mum integer value off for which P(G,q) is nonzero, is ground-state entropy of thgstate Potts antiferromagnét
denoted the chromatic number Gf x(G). nonzero for the given value af) decreased. This can be
From Eq.(1.D), it follows that understood as a consequence of the fact that as one increases
the lattice coordination number, one is increasing the con-
straints on the coloring of a given vertex subject to the con-

Z(G,q,T=0)par=P(G,0), (1.1

*Email address: shu-chiuan.chang@sunysb.edu straint that other vertices of the lattice adjacent to this one
"Email address: robert.shrock@sunysb.edu. On sabbatical leave @te., connected with a bond or edge of the laftibave dif-
BNL. ferent colors. Another way in which to explore this effect is

!At certain special points; (typically gs=0,1,...x(G)), one has  to consider non-nearest-neighbor spin-spin couplings. Again,
the noncommutativity of limits Iirguﬂqsliman(G,q)l’“ in general, these increase the constraints on the values that
#lim,,_ .. IimqﬁqSP(G,q)l’”, and hence it is necessary to specify any given spin can take on, and hence decrease the ground-
the order of the limits in the definition aV({G},q,) [12]. We use  state entropy. We wish to make this more quantitative and
the first order of limits here; this has the advantage of removingshall do so here using exact solutions for the chromatic poly-
certain isolated discontinuities M. nomials and rigorous bounds. A natural starting point for
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studies of such nonnearest-neighbor spin-spin couplings is tfP[tri(Ly=2),Nt= 2m+1,FBG,,PBG,q]
consider the model on a given lattice and add next-nearest-

neighbor(nnn) spin-spin couplings. Equivalently, we can re- =—(g°=3q+1)+(g-2)[(q—2)*]"
define the lattice itself by considering it as a graptwith 1
vertices at the usual lattice sites but with bortésedges in + E(q— 1)(q—3)[[()\t2’3)m+()\tm)m]
graph theory nomenclatureonsisting not only of the usual
bonds joining these lattice sites but also bonds joining next- [(M2d™ (\2)™]
nearest-neighbor lattice sites. We then consider the nearest- 2 24 } (1.6)
neighbor Potts antiferromagnet on this redefined lattice. M23~ 24

Perhaps the simplest case that one could consider is thvxefhere

g-state Potts antiferromagnet in one dimension; the lattice

here is just the lindl,, or circle C, for the case of free and 1

periodic boundary conditions, respectivelgenoted FB¢ Atz’(3’4)=§[5—2qt V9—4q]. 1.7
and PBG). One hasP(T,,q)=q(q—1)""! so W=g-1
and R, is the entireq plane. For the circleP(C,,q)=(q
—-1)"+(q—1)(—1)". In this case, if|q—1|>1, thenW
=q-—1, while if [g—1|<1, then|W|=1, so thatg.=2.

In both casesy.=3 andW=q—2 for =3 (and more gen-
erally, for g in the regionR; given in[35]). Thus, the addi-
. : tion of next-nearest-neighbor couplings increases the value
Hence for either FBCor PBC, there is nonzero ground-state of q beyond which there is nonzero ground-state entropy

entropy SO.:kB In(g—1) for g>2. The addition of nex}- from 2 to 3 and decreases the value of the resultant entropy
nearest neighbor bonds conveFisor C,, to a open or cyclic from Sy=kg In(q—1) to Sy=kg In(q—2) for q=3.

strip of triangles, respectivgly, V.Vith each pair sharing anyye proceed to consider the Potts antiferromagnet on the
edge. We denote these strips Itj=2), Ny, BCy, where oo 10 |attice, and again add next-nearest-neighbor cou-
BC,=FBC, or PBG,. In the cyclic case, the degrée(num- ,jinqq - or equivalently redefine the lattice so that the bonds
ber of neighboring verticgf each vertex is changed from 2 o nqists not just of the usual horizontal and vertical bonds,

to 4, and this is also true of the internal vertices in the opery, ;5150 of honds connecting the diagonally opposite vertices
case. The ch_r_omaiUc numbers in these casesiBfe=2 for o oach square. Following our earlier notati@s], we shall
the line T, (i) x=2(3) for C, with n even(odd, (iii) X  genote this lattice as gqwhere thed refers to the addition

=3 for the open triangular strip, ardv) x=3(4) for the 4t these diagonal bonds. For the squés® and sq lattices,
cyclic triangular strip with the number of trianglé& even 1o chromatic numbers are

(odo). For the Potts antiferromagnet witimn spin-spin cou-
plings on the lingequivalently, on the open triangular strip x(s0)=2, x(sgy)=4. (1.8
with n vertices,
No exact solution is known fow(q) on the sq lattice. In
the absence of such an exact solution, Tsai and one of us

Plsay(Ly=1),FBC,,FBC,,q] (R.S) have carried out Monte Carlo measurements of
— P[tri(L,=2),FBG, ,FBG,,q] W(sqy,q) and have derived a rigorous lower bourib]
=q(q—1)(q—2)"2 1.3 (9—2)(q—3)
aa-1)(q-2) (1.3 WSty @)= ———g——for q=x(sq). (L9
and henceV=qg—2 andR; is the full g plane. This lower bound was compared with the actual value of

For the Potts antiferromagnet withnn spin-spin cou-  W(sq,,q), as determined by the Monte Carlo measurements
plings on the circuit, the equivalence is with the cyclic trian-for 5<q=<10[25,24 and was found to lie very close (tf.
gular strip: Table 11l of Ref.[25]). For example, fog=6 andq=8, the

ratio of the lower bound divided by the actual value was
0.981 and 0.995, and it increased monotonically toward unity
Plsa(Ly=1),FBC,,PBGq] asq increased. Since it is possible to obtain exact analytic
=PI[tri(Ly=2),FBC,,PBC,,q]. (1.4  Solutions forW on infinite-length, finite-width strips of two-
dimensional (2D) lattices [13,12,29-3]1 and [34,35,39—
41,45, one has an alternate way to investig&€sa,,q),
If the strip length involves an even number of trianghés namely, to calculatéV exactly on strips of the gglattice,
=n=2m, then[35,3§ with various boundary conditions. It has, indeed, been found
[31] that for the square and triangular lattices, the values of
W for such infinite-length strips of even rather modest widths
P[tri(Ly=2),N;=2m,FBC,,PBC,q] are close to the corresponding values for the 2D thermody-
5 om m namic limit, for moderate values af. In the present paper
=9°=3a+1+(q=2)"+(a= D23 we report exact calculations &(q), W(q), and on strips
+ (2™ (1.5 of the sg lattice with various boundary conditions. The lon-
gitudinal and transverse directions on the strip are taken to
beX andy, respectively. In Fig. 1 we show some illustrative
while for oddN;=n=2m+1 [45] strips of the sg lattice.
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We use the symbols (FBE and (PBG) for free and
periodic transverse boundary conditions and, as above,
FBC,, PBC,, and TPBG for free, periodic, and twisted
periodic longitudinal boundary conditions. The term
“twisted” means that the longitudinal ends of the strip are
identified with reversed orientation. These strip graphs can
be embedded on surfaces with the following topologies:

d 6 7 8 5 (FBC,,FBC,): open strip, (i) (PBC,,FBC,): cylindrical,
(i) (FBC,,PBC): cylindrical (denoted cyclic hene (iv)
(a) (FBC,,TPBC): Mobius; (v) (PBC,,PBC): torus, and(vi)

1 9 3 1 1 (PBC,, TPBG): Klein bottle?

The labeling of the strips generally follows our earlier
labeling conventions. Thus for a strip with free transverse
5 and longitudinal boundary conditions. (FBEBC,), the
length of the strip is taken to be+1 squares or equiva-
lently edges, withL,=m+2, and the width id_, vertices.
This strip thus hasi=L,L, vertices ande=4L,L,—3(L

9 10 11 19 9 +Ly)+2 edges. For cyclic strips, the width is defined in the
same manner and the lengthlig vertices or equivalently
(b) edges. For strips with periodic transverse boundary condi-
tions, including (PBG,FBC,) and (PBG,PBC), a width
1 2 3 4 1 of L,=3 means that the cross section involtgsvertices.

For L,=m=3 to avoid certain degenerate cases, thg sq
strips with either cyclic or torus boundary conditions have

) n=L,L, vertices. With the same restriction, the cyclic strips
have e=L,(4L,—3) edges and the torus strips haee
=4L,L, edges.

9 Let us next comment on the planarity or nonplanarity of
the strips of the sglattice with various boundary conditions.

We shall concentrate here on nondegenerate cases where the
strips are proper graphs without multiple edges. Consider

1 2 3 4 1 first the strips with (FBG,FBC,) boundary conditions. For
Ly=2 and arbitraryL,, it is easy to show that these are
(c) planar by taking the second diagonal bond for each square

and drawing it external to the strip; by redefining the labeling
of the x and y axes, it follows that this strip with
FIG. 1. lllustrative strip graphs of the gtpttice: (a,b) L,=2,3 (FBC, ,FBC,) boundary conditions..,= 2, and arbitranyL,
(FBG, ,PBG,) (cyclic); (c) Ly=3, (PBG,,PBG,) (toroidal bound- s also planar. For other cases we shall make use of two
ary conditions. theorems from graph theory. The first of these states ti@t if
is a planar graph with vertices ance edges witm=3, then
An important property is that with the two added diagonale<3(n—2) [e.g., Corollary 11.kc) in Ref. [10]] and the
bonds, each square of thesdattice constitutes a complete second states that @ is a planar graph witm=4, thenG
graph on four verticedHere, the complete graph anver-  has at least four vertices of degrée<5 [e.g., Corollary
tices K, is defined as the graph each of whose vertices id1.1(e) in [10]]. Now
connected to all of the other—1 vertices by bonds
(=edge$; it has chromatic numbey(K,)=r.] Compared 3(n=2)—e=-Lly+3(LxFLy
with the square lattice, for a giveq coloring of the sg -8 for sq, (FBC,,FBC) (1.11
tice he B, of hese bonds clearly ncreases 12 %o tat o suficienty great, andrt, 3(1-2)-e
creases(G,q). As we proved earlief26], if a lattice A’ negative and hence the strip is nonplanar, by the first theo

. . O rem. For example, 3(—2)—e<0 if L,=4 andL,=5 or
can be obtained from anothdr, by connecting disjoint ver- ; _ ~5- Yo L
tices of A with bonds, thenW(A',q)<W(A,q) for g color- vice versaie., L=4 andL,=5; and simiarly, ifL, =Ly
' , ' =5. Considering next the strips of theskattice that are

ings of the two lattices. An example of the application of thiscylic, j.e., have (FBE,PBG,) boundary conditions, we
theorem was given in Reff26]: for g colorings of the square, have

triangular (tri), and honeycomb(hc) lattices, W(tri,q)
<W(sqq)<W(hc,q). [W(sqQ) is strictly less than 3(N—2)—e=—LyL,+3Ly
W(hc,q) except at the valueq=2, where W(sq,2) -6 for sq, (FBC,,PBC). (1.12
=W(hc,2)=1.] In the present context, we note the inequality
for q colorings of these lattices:
2These BC'’s can all be implemented in a manner that is uniform
W(sqy,q) <W(tri,q)<W(sqq)<W(hc,g) (1.10 in the lengthL, ; the casdvii) (TPBC,, TPBG,) with the topology
of the projective plane requires different identificationd avaries

(for g values where such colorings are possible and will not be considered here.
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Hence, 3(—2)—e<0 for all L, if L,=3, so that these where theAGSi andbGsi are polynomials irg (with no com-
strips are nonplanar. For the strips with (RBEBC,), i.e.,  mon factors and '
torus boundary conditions, we have

d = deg(N) (2.6
3(n—2)—e=—(L,Ly+6) for sq, (PBC,PBC)
(1.13 and
so that these strips are also nonplanar. This can be seen al- dp=deg(D). 2.7

ternatively by observing that each vertex on the torus stripﬁ_hiS enerating function vields the chromatic oolvnomials
has degreeA=8 and applying the second theorem cited . Y 9 y poly

above. The second theorem also shows that thetsip with via the Taylor-series expansion in the auxiliary variakle

Klein bottle boundary conditions is nonplanar. %

A generic form for chromatic polynomials for recursively [(Gs,q.X)= 2 P[(Gg)m,qlx™, (2.9
defined families of graphs, of which strip grapB@s are spe- m=0
cial cases, is

where we follow the notational convention in Rg29], ac-
Ng_ cording to which a strip is considered to be compriseanof
= . _ m repetitions of a basic subgraph ukitconnected to an initial
PL(GsIm.al 12'1 Co,s(@Mhoy (@17 (119 subgraphl; here we takd =H so that a strip with a given
value ofm hasm+1 columns ofK,'s andm+ 2 vertices in
wherecg_;(q) and theNg_ , termshg_ ;(q) depend on the  the longitudinal direction. The denominator can be written in
type of strip graphG, as indicated, but are independent of factorized form as

m. dp
D = 1-Ag iX). 2.9
Il. STRIPS WITH (FBC,,FBC,) ©s 11:[1 (17 R %) 29
A Ly=2 These are thag_j's in Eq. (1.14); the coefficients are deter-

The chromatic polynomial for the strip of the skattice  mined by Eqs(2.14 or (2.19 in Ref.[30].
with Ly=1 and free transverse and longitudinal boundary For L,=3, we finddp=2, dy=1, and
conditions was given above in E(L.3). For theL,=2 case

the chromatic polynomial is I'[sqy(L,=3),FBC,,FBC,,q,X]
P[sa(L,=2)y,FBC, ,FBC,,q] ~q(q—1)(9—2)(q—3)*[(q—2)—(q—1)(q—3)x]
~ 1-(g-3)(g*-6g+11)x+(q—2)(q—3)°%*
(2.10
In the m—oo limit, . .
The denominator can be written as
sgy(L,=2),FBC,,FBC,q]=[(q—2)(q—3)]*2
Wisaty=2) FBG FRGal=lla=2) a3, Dagao= (1 NiqoX) (1 Nsgao), (213
with B=. where
1 2
B.L,=3 )\sod3o,(l,2):§(q_3)[q —6g+11
For theL,=3 strip, we use the same generating function A 5 5 y
method as we have befof@9,30,33. In general, for the +(q*— 1293+ 549~ 1124+ 97) ']
family of strip graphs Gg, the generating function (2.12

I'(Gs,q,X) is a rational function of the form
and the shorthand d@o denotes the strip of the gdattice
MGs,q,x) with L,=3 and open(o) boundary conditions. From this,

(Gs,0.0= D(Gg,q,X) 23 using the general formulas in Rdf30], one can write the

chromatic polynomial in the form of Eql1.14 (with N,

with =2). In them—oo limit.
dy . W[sty(Ly=3),FBC,,FBC,,q]= (Asg00 > (2.13
MGs,0,%) =2, Ag_j(q)X! (2.4

1=0 The nonanalytic locu$3 is shown in Fig. 2 and is com-

and prised of an arc stretching between endpointsqatl.95
+1.43 and 4.05+0.396, together with the complex conju-

dp gate arc. In agreement with the general discussion given be-

D(G..qx)=1+ be ()X, 2 fore[29,30,4], these four points are the branch points of the
(Gs.a.%) 121 GS"(q) 29 square root in Eq(2.12). B does not intersect the reglaxis,
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FIG. 3. Chromatic zeros for theXdL, strip of the sg lattice

free transverse and longitudinal boundary conditions. Chromatic zewith free boundary conditions arld,= 20 (i.e., n=80).

ros are shown for the casg =20 (i.e., n=60).

so that nog, is defined. The regioR; is the entireg plane,
with the exception of the arcs lying df.

Here we finddp=4, d,=3. Again using the shorthand
notation sg4o to denote this open strip of the sdpttice

with Ly=4 we have

begua0,1=—0*+130°~ 689>+ 1719176, (2.14

bsod4o,2: (g— 3)

X (20°—339%+2199°— 7292+ 12149 — 803),
—(a—2)3(q5— 4 3_ 2 _
begueo3= (A~ 3)%(0°— 179+ 1189°~ 4209°+ 770y — 586),

bsud4o,4: —(q—2)(q—3)6(q—4)_

For the functionsAgy 4, j in the numeratoV, it is conve-
nient to extract a common factor and thus define

Asquaoj=A(0—1)(q—2)(d—3)*Asqo,; -

Then

Asad4o,O: (g— 2)2,

Asg01=— (20" —219°+ 780°~ 113 +47), (2.20

Asq02= — (0= 3)(q°— 149°+ 7703~ 20492 + 2450 - 91),

and

C.L,=4

Asod4o,3:(q_1)2(q_3)3(q_4)- (2-22)

Let us write the denominator as

4
Dsod40:]_].:.[l (1_)\sqj4o,jx)- (2.23

Then
W:()\sod4o,j,max)l/4 for geRy, (2.24

where)\sodlmyj,maxis the)\sod40'j in EQ. (2.23 with maximal
magnitude in this region.

Chromatic zeros are shown in Fig. 3 fbg=20, i.e.,n
=80. For this great a length, these chromatic zeros give a
reasonably good approximation to the asymptotic loBus
As is evident from this figure3 does not cross the reg|
axis, so that na_ is defined.

lll. STRIPS WITH [FBC,,(T)PBC,]
A L,=2

The chromatic polynomial for thé =1 cyclic strip of
the sg lattice was given above in Egél.5) and(1.6). Here
we consider theL,=2 strip of the sg lattice with
(FBC,,PBC), i.e., cyclic, boundary conditions. For a given
value ofL,, this cyclic strip graph is identical to the corre-
sponding strip with Mbius boundary conditions

(FBC,,(T)PBG):
G(sty,L,=2L,,FBC,,PBG)
=G(sqy,Ly=2L,,FBG,, TPBG,). (3.1

This can be proved by calculating the adjacency matrices for
the cyclic and Maius strips, which are identicdlHere the
adjacency matrix of am-vertex graph is th&XxXn matrix A

with Aj; equal to the number of bondsdges$ that connect
theith andjth vertices. The adjacency matrix fully defines
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the graph] Because of the identity of the,=2 cyclic and

Mobius strips, we shall refer to them both with the designa-

tion sqy(Ly=2)y,, FBG,, (T)PBC,. For the general cyclic-

strip of the sq strip, with L,=4 to avoid degenerate cases,

the chromatic number is given by
4

5

if L, is even

if L, is odd
(3.2

x(sty,L,,L,,FBC,,PBG) =

For the present,=2 cyclic/Mobius strips, the degenerate
cases are as follows: fdar,= 2, the strip reduces t§, while
for Ly=3 it reduces tKg, with x(Kp)=p.

The chromatic polynomial for the cyclic strip of thegssq
lattice withL,=2 andL,=m is [20]

Plsa{(Ly=2),FBC, ,(T)PBC}m.a]

1
=504(a-3)2"+[(q-2)(q=3)]"

+(@=D[2(3=]™ (3.3
We determine the boundar§ to be the union of a circle
centered ag=2 with radius 2 and a circle centered at
=3 with radius 1:

B{la—2|=2}U{lq—3|=1}. (3.4
These two circles osculatee., intersect with equal tangehts
atq., where

afsa(Ly=2),FBG, (T)PBG]=4. (3.5

In the terminology of algebraic geometry, this poiyt is
thus a tacnode.

This locus is shown in Fig. 4. The locisseparates thg
plane into three regiongi) the outermost regioR;, which
is the exterior of the larger circlég—2|=2 and which thus
includes the real intervalg=4 andg<0, (ii) region R,,
which is the interior of the smaller circleq—3|<1 and
includes the real interval2q=4, and(iii) regionR5, which
is the interior of the larger circleq—2|<2 minus the
smaller disk|g—3|=1 and includes the real intervaki
<2. Thus,B crosses the real axis atq=0,2,4 andg.=4.
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FIG. 4. LocusB for W for the 2x« cyclic or Mobius strip of
the sg lattice. Chromatic zeros are shown for the chge 20 (i.e.,
n=40).

responding eigenvalukg ; of the coloring matrix, i.e., the
dimension of the corresponding invariant subspace in the full
space of coloring configuratiorid5,24,3§. We recall that
the coloring matrix can be defined as the matrix whoge
element is 1(0) if the coloring configurations on two adja-
cent transverse slices of the strip are compatilrieompat-
ible). Thus, in the absence of zero eigenvalues of the color-
ing matrix, C(G) is the dimension of the space of coloring
configurations of such a transverse slice. For the cyclic strip
graphs of the sglattice, the transverse slice is the line graph
L, of lengthL, vertices, so the space of coloring configura-
tions of this transverse slice is
P(Ly,)=P(Ty,a)=a(q—1)""*. (3.10
In case where the cyclic strip and the bos strip of the sg
lattice are identical, the full coloring matrix automatically

As is evident in Fig. 4, the chromatic zeros lie near to thetakes account of both contributions, so that for each indi-

asymptotic locud3. In the various regions

W=[(g-2)(q—3)]** for qeRy, (3.6)
|W|=22" for qeR,, (3.7
|W|=|2(q—3)|¥? for qeRs (3.9

(for g in regions other thaiR,, only the magnitudéw(q)|
can be determined unambiguously
We define the sum of the coefficients as

N)\G
C(G)zjz,l Ca, - (3.9

For sufficiently large positive intege, the coefficientcg
in Eq. (3.9 can be interpreted as the multiplicity of the cor-

vidual strip, corresponding to a given permutation in the
identification of vertices at the longitudinal boundary, one
must divide by the symmetry factor. In the present case,
=2 and there are two permutations of the identifications of
the boundary conditions that give identical strip graphs, so
that this symmetry factor is 1/2! so that

C(sqy,Ly=2,FBG,,PBC)=C(sty,Ly=2,FBG,, TPBC)

1
=§q(q—1). (3.11)

This agrees with the sum of the coefficients in the expression
(3.3). A remark that will be relevant later is that if the col-
oring matrix has a zero eigenvalue of multiplictty,,,, then,
since this eigenvalue does not appear in @ql4), the sum

of the coefficients that do appear in the chromatic polyno-
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mial (1.14) is equal to the full dimension of the space of

coloring configurations minus, .

B.L,=3

We have calculated the chromatic polynomial for the next
wider cyclic strip, withL,=3. For this strip the chromatic
numbersy are the same as for tHg,=2sq; strip. We find

NSCH,Ly= 3CyCA = 16 al’ld

16

P[Sod{(l-y: 3)’ FBCy ’ PBCx}m aQ] :;1 CsodSC ,j()\sad3c ,j)m-

(3.12

(The termshgq ¢ ; are the same for cyclic and Nus lon-
gitudinal boundary conditionsWith the Nsqac,j'S ordered
according to decreasing degrees of their coefficients for the

cyclic strip, we find

Negao1=1L, (3.13
Neggae= 2, (3.14
Nsqac3= — 3, (3.15
Nsqaca=0—3, (3.16
Nsg3c 5= —(4—3), (3.17)
and
Nsg3c.(67=0— 4+ J2g%—14q+ 25. (3.18

im@ o4

-2

-3

SHU-CHIUAN CHANG AND ROBERT SHROCK

PRE 62

Re(q)

FIG. 5. LocusB for W for the 3X« cyclic or Mobius strip of
the sg lattice. Chromatic zeros are shown for the chge 20 (i.e.,

The termshgqac,j » j=8,9,10 are the roots of the cubic equa-
tion

£-4(q—4)&+(9*~109+17é+2(q—1)(q—3).
(3.19

For j=11 we have

)\SOdSC,ll: _(q_S)Z- (3-2()

The terms\sqac . j=12, 13 and 14 are the roots of the
cubic equation

£€+(29°- 159+ 30€°— (9—3)%(9*~5q+5)

X E—2(q—3)4 (3.20)
Finally,

Nsq3c,(15,16 = Nsqu30,(1,2 - (3.22

For the coefficients we calculate

1
Csod3c,1:g(q_1)(q_2)(q_3)1 (3.23
1

Csod3c,2: §(q—2)(q—4), (324}

n=60).
1
CSGd3C,3ZEQ(q_1)(q_5)! (3.29
1 .
Csod30,j:§q(q_3) for j=4,8,9,10, (3.26
1 .
Coqaoj=0—1 for j=11,1213,14, (3.29
and
Coqae=1 for [=1516. (3.29

Summing the coefficientssod%,j , we find

1
Clsay(Ly=3),FBG,,PBG]=ga(a+1)(49-7).
(3.30

Since forL,=3 the cyclic and Mbius strips of the sglat-
tice are distinct, the full sum of eigenvalue multiplicities is
equal to Eq(3.10 with n=L,=3 (without dividing by any
symmetry factor. The sum of the coefficients appearing in
Eq.(3.12 is less than this quantitg(q—1)2, by the amount

1
Csod?,c,zerozgq(zqz_gq'l' 13), (3.3)

which indicates that for this strip the coloring matrix has a
zero eigenvalue with this multiplicity.
The boundary3 is shown in Fig. 5. This boundary sepa-
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rates theq plane into four regions. These includ@ the

outermost regioR;, which contains the semi-infinite inter-

vals g>gq. andq<0, whereq, is
qc[st(Ly=3),FBC,,PBC]=4.254654... (3.32

(a root of the equatiomy*— 14q°+ 729°— 1689+ 162=0),

(i) a narrow crescent-shaped regiBp containing the real
interval 4<qg=q,, (iii) the regionR; containing the real
interval 2<q=<4, and(iv) the regionR, containing the real

interval 0<q=<2. Associated with these regions are two
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bsgacyi2=(d—3)(5q*—74q°+ 4224°— 1100+ 1109,

complex-conjugate pairs of triple points, as is evident in Fig.

5. Note thatg, is not a tacnode for thelL¢—c limit of the)

L,=3 cyclic strip, in contrast to the situation for the corre-

spondingL =2 cyclic strip.
In the various regions

W=(\sqzc19™° for qeRy, (3.33
IW|=3Y for qeR,, (3.34

and
|W|:|)\sud:-3c,81(m|1/3 for gqeRs, (3.39

where \sq 3¢ 810n denotes the root of the cubi@.19 of
maximal magnitude iRz, and

(3.39

|W|:|)\sod30,1214n|1/3 for geRy,

where A\ sq,3c 1214 denotes the root of the cubi@.21) of
maximal magnitude ifmR,.

IV. STRIPS WITH (PBC,,FBC,)
A.L,=3

For theL, =3, Ly=m+2 strip of K,’s forming squares,
with (PBC,,FBC,) boundary conditions[for which n
=3(m+2)] we find

P[sc(Ly=3)m.PBC, ,FBG,,q]

=q(g—1)(q—2)[(g—3)(q—4)(q—5)]™**,
(4.1)

where

W[S%<Ly=3>,PBCy,FBCX,q]=[<q—3)<q—4)<q—5)(§/;)

The continuous nonanalytic locus=J; W has isolated
branch point singularities where it vanishegat3, 4, and 5.
Aside from theseR; is the full q plane.

B.L,=4

For this case it is again convenient to give our results in

terms of a generating function I'  [sqy(L,
=4),PBG,,FBC,,q,x]. We finddp=3, d\~=2, and(using
the abbreviation s@cyl for this strip

begacyi= — 0 +160°— 10492+ 3169372, (4.9

(4.4
and
bsgacya= —(A—2)(q—3)*(29°—169+33). (4.5
Defining
Aoy i=A(a=1)(4-2)(d=3)Asquacytj (4.6
we calculate
Asquaeyo=0*— 140°+ 790~ 2109 +220, (4.7

Asgacy, 1=~ (59°— 799"+ 501q° — 1586y° + 2485 — 1513

(4.8
and
Asgacyz=(0—3)(q?~3q+3) (2%~ 169+33). (4.9
Writing
3
Dscd4cyI: ]_1:[1 (1- )\scd4cy|,jx) (4.10
we have
W= ()\sod4cyl,j,max) Y4 for geRy, (4.11

where)\sodémy,,j,maX is the Nsquacyl in Eq. (4.10 with maxi-
mal magnitude in this region.

Chromatic zeros for the 4L, strip of the sq lattice with
cylindrical boundary conditions are shown in Fig. 6 fof
=20, i.e.,n=280. Again, the length_, is sufficiently great
that these give a good idea of the location of the asymptotic
curve5. Since3 does not cross the reglaxis, there is n@.
for this case.

V. STRIP WITH L,=3 AND [PBC,,(T)PBC,]

We consider here the gostrip with Ly=3 and torus
boundary conditions (PBCPBC,). By the same method as
mentioned above, e.g., calculating the associated adjacency
matrices and showing that they are the same, it follows that
for a givenL,, this strip with torus boundary conditions is
identical to the corresponding, =3 strip with Klein bottle
boundary conditions (PBCTPBC,):

G(sqy,L,=3L,,PBC,,PBG)

=G(sqy,Ly=3,L4,PBC,,TPBC). (5.1
Since there are 3 vertices on the vertical slice, and hence 3!
permutations that yield identical graphs, it follows, as ex-
plained above, that the sum of the eigenvalue multiplicities
for each individual strip contributes only 1/3! of this total:
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FIG. 6. Chromatic zeros for theXdL, cylindrical strip of the
sqy lattice, i.e., with (PBG,FBC,) boundary conditions witi.
=20(i.e.,n=80 vertices.

C[sty,L,=3,PBG,(T)PBC]

1 1
=3 P(Cs,a)=za(a-1)(a-2). (5.2

These strips have the chromatic number

6 for even m=4

7 for odd m=7"
(5.3

x[sa(Ly=3)m,PBG,,(T)PBG]=

Form=2 andm= 3, theL,=3 sq; torus strip degenerates to

Ke and Kg, respectively, withy(K,)=p as before; form
=5 this strip hasy=8. The fact that the values gf for the
L,=3 torus strip of the sglattice in Eq.(5.3) and the special
cases noted are larger than the vajue4 for the infinite 2D
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FIG. 7. LocusB for W for the 3X < strip of the sq lattice with
[PBG,,(T)PBC]J=torus or Klein bottle boundary conditions.
Chromatic zeros are shown for the case=20 (i.e., n=60).

Thus,N, =4 for this strip. The labeling of the coefficierts
and terms\; in Eq. (5.4) is consecutive. Explicitly calculat-
ing the sum of the coefficients in the chromatic polynomial
(5.4), one sees that the result agrees with Eg2). It is
interesting that the coefficients that occur in Eg4) are the
same as a subset of the coefficients that occur in the chro-
matic polynomial for the., =3 cyclic strip. We find that the
degrees irx of the numerator and denominator of the gener-
ating function for this strip graphs are 2 and 4, so that all of
the \;’s in dp=4 contribute toP.

The nonanalytic locugboundary B is shown in Fig. 7
and consists of three circles that osculatgat where

dc[sa(Ly=3),PBG,,(T)PBG]=6, (5.5

namely,

B:{lq-3|=3}U{|q—4[=2}U{|q-5|=1}. (5.6

sq, lattice can be ascribed in part to the constraints arising
from the small girth of the triangular transverse cross sectiorhus, as was true for the, =2 cyclic strip,q, is a tacnode.

of these strips.

Evidently, B crosses the real axis @& 0, 2, and 4 as well as

We calculate the chromatic polynomial by iterated use ofat .. This locusB divides theq plane into four regions(i)
the deletion-contraction theorem, via a generating functionhe outermost regiofR;, including the real intervalg=6
approach{29,30. From this we obtain the chromatic poly- andqg=0, (ii) regionR,, the interior of the smallest circle,
nomial in the form(1.14 via the general formulas in Ref. |q=5|=1, containing the real interval4q<S, (iii) region

[30] and obtain
Plsty(Ly=3)m,PBC,,(T)PBC,,q]
1 1
=59(a-1)(q=5(-6)"+ Eq(q—3)[6(q—5)]”1

+(g—D[—3(qg—4)(g—5)]"

+[(a=3)(q—4)(q—=5)]™ (5.4

R, the interior of the circlgdq—4|=2 minus the diskq
—5|=1 comprisingR, and including the real interval 2
<q<4, and(iv) regionR,, the interior of the largest circle,
|g—3|=3 minus the diskq—4|=2 and including the real
interval 0<qg=<2. We have
W=[(q-3)(q—4)(q—5)]** for

qERl. (57)

The fact that this coincides with the&/ calculated for the
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corresponding strip with (PBCFBC,) [see Eq.(4.2)] is a  exact solution for the chromatic polynomial for the strip with
general resulf35,39,4]. For the other regions we have torus boundary conditions above.

VI. RIGOROUS LOWER BOUNDS ON W AND APPROACH

_rl1/3
[W|=6"% for qeR,, (58 TO THE INFINITE-WIDTH LIMIT

|W|=|6(q—5)|*® for qeRs, (5.9 Here we present rigorous lower bounds dhfor strip
graphs and show that these are very close to the actual values
obtained from our exact solutions and hence serve as very
good approximations to the actudl functions. Using our
exact solutions and these approximations, we then determine
how, for a giveng, the values ofW for the infinite-length,
finite-width strips approach the value for the infinite 20 sq
Evidently, for all of these strips, the loc#shas support for |attice as the strip width., gets large.
Re@)=0. As discussed in Ref$39] and[41], a general result for a

It is of interest to comment further on tleg values for  given type of strip graplG, is
(the Ly—co limits of) these strips of the gdattice. In our

and

IW|=|3(q—4)(q—5)["® for qeR,. (5.10

previous exact calculations of chromatic polynomials for W[Gs(Ly),BCy ,FBC,q]

variogs strip gra}phs of (eg_ula.r lattices and thg resultént =W[Gq(L,),BCy,PBC,,q]

functions for theirL,— o limits, it was found that if one uses

free transverse boundary conditions and periodic longitudi- for g=q [Gs(L,),BC,,PBC], (6.1

nal boundary conditions, the value @f for a given family is where BG=FBC, or PBG. Hence, for example,

a nondecreasing function &f,. Our results for the strips of W L. = 2) EBC. FB - W L. =2) FB
the sq lattice exhibit the same behavior. Hence, our findingPB[é(odé]yfor q)2,4 aqn/d .al [scu(ly =2). FBG,

that q.=4.25 for the (,—o limit of the) L,=3 cyclic/

Mobius strip graph suggests thag for the infinite 2D sg W[sqy(Ly=3),PBG,,FBC,,q]

lattice, which we denote(sqy), is greater than 4.25. Note B B

that we cannot use our finding thgt=6 for the L,—oo =Wlsty(Ly=3),PBG,,PBG.q] for q=6.
limit of the L, =3 torus/Klein bottle graph of the gdattice (6.2

to suggest that|.(sq;) might be 6 because we have previ-
ously obtained exact solutions f@¥ that show thaty is not,

in general, a nondecreasing function laf on strip graphs
with periodic transverse boundary conditiof29,45. For
example, from exact results, we have found that forlthe
—oo |limit of strips of the triangular lattice with cylindrical
boundary condition (PBGFBC)), q.=4 for L,=4 [29],
while q.=3.28 forL,=5 andq.=3.25 forL,=6 [45]. For
the square, triangular, and stattices, constructed, say, as
theL,, Ly—c limits of open rectangular sections, one has
the chromatic numberg=2, 3, and 4, respectively. Now the
Potts antiferromagnet has a zero-temperature critical point arlo measurementsee Table Il of[25))

q=3 on the square latticg, 17,18 and atq=4 on the tri- Using the same methods, we can obtain a lower bound on

angular lattice 19], respectively(which should be indepen- W for the sg strips of interest here. Here we restrictdo

dent. of.bqundary condit[ons used in taking the thermody->6. For the case of free transverse boundary conditions and
namic limit), corresponding to the valueg.(sq)=3 and

0c(tri) = 4. These results are consistent with the possibilityeithe.r free or periodic longitudinal boundary conditions we
thatg.(sqy) =5, i.e., the possibility that thg=5 Potts anti- obtain the lower bound

We recall that, using coloring matrix methoflkb], Tsai
and one of ugR.S) previously derived rigorous upper and
lower bounds orWV for various 2D latticeg24—-24. It was
found that the lower boundev,, were actually very good
approximations to the actu&V values, as determined, e.qg.,
by Monte Carlo simulations. This was also seen analytically
from the property that the larggTaylor series expansions of
q W and q W, coincided to several orders beyond the
first term, which is unity. The lower bound.9) was derived
as part of this paper. As noted above, this bound agrees very

ell with the actual values oV, as determined via Monte

ferromagnet has &=0 critical point on the sg lattice. [(q—2)(q—3)]* Yy
However, there is not a 1-1 correspondence between chro- WIsa(L,),FBC,,BC,.q]= e
matic number andg.; for example, the Kagoméattice 6.3

(again constructed, say, as the limit of a finite section with _ _ o _
free transverse and longitudinal boundary conditidresy ~ For the sq strips with periodic transverse boundary condi-
=3 like the triangular lattice, bugj,=3, in contrast to the tions and either free or periodic longitudinal boundary con-
g.=4 value for the triangular lattice. If, indeedi(sg)  ditions, we obtain the lower bound

=5, this would also mean thaj, for an infinite-length, = AlL
finite-width strip could be larger tham, for the full infinite Wisay(Ly),PBG, BC,.a]=AT, 64
lattice since we have obtaingg=6 in Eq. (5.5 from our  where

A (9/2)(q—3)2%+[(q—2)(q—3)]"v+(q—1)[2(3—q)]"
- (q=1)+(g=1) (-1 '

(6.5
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TABLE I. Values of W for infinite-length, finite-width strips of TABLE II. Values of W for infinite-length, widthL, strips of
the sq lattice with free transverse boundary conditions, as functionghe sg lattice with (FBG,BC,), as functions of}, compared with
of g, from evaluation of our exact solutions. For each pair of valuesthe corresponding values for the infinite 2D, dgttice. For each
of L, and g, the upper entry is the value & from the exact value ofL, andg, the upper entry is the value & and the lower

solution and the lower entry is the ratityr . entry is the ratio of this value divided B¥(sq,,q) for the 2D sg
lattice. ForL,=2,3,4, the values ofV are taken from the exact
Ly 6 7 8 9 10 solutions; for 5<L,<10 the values are from E¢6.3).
q
L, 6 7 8 9 10
2 3.464 4.472 5.477 6.481 7.483 q
1 1 1 1 1
3 3.083 4.066 5.055 6.047 7.0415 2 3.46 4.47 5.48 6.48 7.48
1.006 1.003 1.002 1.001 1.001 1.42 1.33 127 1.23 1.20
4 2.909 3.878 4.857 5.842 6.831 3 3.08 4.07 5.055 6.05 7.04
1.009 1.004 1.002 1.0015 1.001 1.26 121 117 115 113
4 2.91 3.88 4.86 5.84 6.83
1.19 1.15 1.13 1.11 1.10
Evidently, for largeq, the lower bound6.4) with Eq. (6.5 5 2.78 3.75 4.73 5.71 6.70
goes over to Eq(1.9) for the infinite lattice. 1.14 1.11 1.10 1.08 1.07
In Table I, we compare the values W for 6=<gq=<10 6 271 3.68 4.65 5.63 6.62
from exact solutions for thé,=2,3,4 open strips with the 1.11 1.09 1.08 1.07 1.06
respective lower boundl.9). For each pair of values df, 7 2665 3.625 4.60 5.58 6.56
and g, the upper entry is the value o from the exact 1.09 1.08 1.07 1.06 1.05
solution and the lower entry is the ratio 8 263 359 456 553 6.52
1.075 1.07 1.06 1.05 1.04
Wsz\\//V [SO"(I_LV) ;:FBBCV ’BBCX’q] : (6.6) 9 2.60 3.56 453 550  6.48
[sa(Ly), FBG,BCc.alip 1.06 1.06 1.05 1.04 1.04
where W[sgy(L,),FBC,,BC,,q], is the lower bound(b) 10 2.58 3.535 4.50 548 6.46
given by the right-hand side of E¢6.3 and the numerator 1.06 1.05 1.04 1.04 1.04
and denominator are independent of the boundary conditions * 2.45 3.37 4.31 5.27 6.24
in the longitudinal direction. The bound is identical to the 1 1 1 1 1

exact expression fow for Ly=2 and is very close foL,
=3 andL,=4. Thus, just as was found in our earlier work
with Tsai[24-26, the lower bound is not just a bound but

also a very accurate approximation to the exact valué&/of > | th h pair of val
especially for moderate and large Having confirmed this  tiVe lower bound®6.4) with Eq. (6.5). For each pair of values
of L, andq, the upper entry is the value ¥ from the exact

again for the present type of strip graphs, we use this ap=" -V, : ,
proximation to study the approach to the infinite-width limit, SClution and the lower entry is the ratio
i.e., the full infinite 2D sq lattice. In Table Il we show
values ofW for 6<g=10 and widths 2L,<10, as com- - Wsay(Ly),PBG;,BC,,q] ,
pared with the values foL,=cc, i.e., for the full 2D sg W[sqy(Ly),PBC,,BC,,qlip
lattice. For each pair of valuds, andq, the upper entry is .

the value ofW and the lower entry is the ratio of this value Wwhere W[sqy(L,),PBG;,BC,,q];, is the lower bound(b)
divided by the corresponding value ®¥ for the 2D sq  given by the right-hand side of E¢6.4) with Eq. (6.5 and
lattice. ForL,=2,3,4, the values oV are from evaluations the numerator and denominator are independent of the
of the exact solutions, while fot, from 5 to 10 they are boundary conditions in the longitudinal direction. The bound
from the approximation provided by E¢6.3 and forL, is identical to the exact expression féf for L,=3 and is

=o they are from the Monte Carlo measurements given in

Ref.[25]. One sees that for a fixdq,, the value oW on the TABLE Ill. Values of W for infinite-length, finite-width strips
infinite-length strip approaches that for the 2D latticegas of thg s@ lattice with periqdic transverse boundary conditions, as
increases. Clearly, for fixeg| the value ofw for the infinite- functions ofg, from evaluation of our exact solutions. For each pair
length strip approaches the value for the 2D latticeLas of values ofL, andg, the upper entry is the value o from the
increases, and Table Il provides a quantitative picture of thi§*@Ct solution and the lower entry is the raRge.

approach; for example, fdr,=10 and a moderate value qf

Ill, we compare the values &V for 6=qg=10 from our exact
solutions for thel,=3,4 cylindrical strips with the respec-

(6.7)

such as 7 or 8, th®V values are within several percent of Ly 6 ! 8 o 10

their 2D lattice values. We recall that this approach for this

type of strip with free transverse boundary conditions was 3 1.817 2.8845 3.915 4.932 5.944

proved to be monotonic in Ref31]. 1 1 1 1 1
We next study the approach of the valuesvébn strips 4 2.629 3.5005 4.412 5.348 6.300

of the sq lattice with periodic transverse boundary condi- 1.024 1.014 1.009 1.006 1.004

tions to their values for the infinite 2D gdattice. In Table
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TABLE IV. Values of W for infinite-length, widthL, strips of TABLE V. Properties of?, W, and B for strip graphsGg of the
the sq lattice with (PBG,BC,), as functions ofy, compared with  sq lattice. The properties apply for a given strip of ty@e of size
the corresponding values for the infinite 2D, dagttice. For each L, XL,; some apply for arbitraryt,, such asN, , while others
value ofL, andg, the upper entry is the value &% and the lower  apply for the infinite-length limit, such as the properties of the locus
entry is the ratio of this value divided By/(sqy,q) for the 2D sg B. For the boundary conditions in thg and x directions
lattice. ForL,=3,4, the values oW are taken from the exact solu- (BC,,BC,), F, P, and T denote free, periodic, and orientation-

tions; for 5<L, <10 the values are from E6.4) with Eq. (6.5). reversed(twisted periodic, and the notatiofiT)P means that the
results apply for either periodic or orientation-reversed periodic.
Ly 6 7 8 9 10 The column denoted Egs. describe the numbers and degrees of the
q algebraic equations giving thebsyj ; for example{6(1), 2(2), 2(3)}

means that there are six linear equations, two quadratic equations

3 1.82 2.88 3.91 4.93 5.94 and two cubic equations. The column denoted BCR lists the points
0.743 0.857 0.908 0.936 0.953 4t which crosses the rea@ axis; the largest of these . for the

4 2.63 3.50 4.41 5.35 6.30 given familyGg. The notation “none” in this column indicates that
1.07 1.04 1.02 1.015 1.01 B does not cross the reglaxis. The column labeled “SN” refers

5 2.32 3.29 4.26 5.23 6.21 to whetherB has support for negative Rg( indicated as yeéy) or
0.949 0.978 0.989 0.994 0.996  no(n).

6 2.43 3.35 4.29 5.25 6.22
0.994 0.994 0.996 0.997 0.998 Ly BC, BC N, Egs. BCR SN

7 2.39 3.33 4.28 5.25 6.22 1 E E 1 ST, none n
0.976 0.989 0.994 0.996 0.998 2 E = 1 (11} none n

8 241 3.33 4.29 5.25 6.22 3 = E 2 1)} none n
0.984 0.991 0.995 0.997 0.998 4 E £ 4 (1(4) none n

9 2.40 3.33 4.29 5.25 6.22 1 E (TP 4 12(1),1(2)} 0,2 3 n
0.980 0.990 0.994 0.997 0.998 2 E (TP 3 3} 0,2 4 n

10 2.40 3.33 4.29 5.25 6.22 3 F MP 16 {6(1),22),2(3) 0,2 4,425 n
0.982 0.990 0.995 0.997 0.998 3 P = 1 (1)} none n

o 2.45 3.37 4.31 5.27 6.24 4 ) F 3 1(3)} none n

1 L L 1 L 3 P (MP 4 {4(1)} 0,246 n

very close forL,=4. Hence, as was the case for the openerate value of the width, such ds=6, andgq~8, W is
strip of the sq lattice, the lower bound is not just a bound already within a few parts per thousand of its infinite 2D
but also a very accurate approximation to the exact value dkttice value.

W, especially for moderate and large Having established One can also compare the results Wéwith those on the
this, we use this approximation to study the approach to thequare and triangular lattices; this comparison shows the ef-
infinite-width limit, i.e., the full infinite 2D sg lattice. In  fect of the addition of a single diagonal bond to each square
Table IV we show values oWV for 6=g=<10 and widths 3  to go from the square to the triangular lattice, and then the
<L,=<10, as compared with the values foy=, i.e., for  addition of a second opposite diagonal bond to each square
the full 2D sgq lattice. For each pair of valuds, andq, the  to go from the triangular to gdattice. This was done before
upper entry is the value AV for the infinite cylindrical or in Refs.[12,24] and[25].

torus strip and the lower entry is the ratio of this value di-

vided by the corresponding value \bf for the 2D sq lattice. VIl. ZERO-TEMPERATURE CRITICAL POINTS

For L,=3,4, the values ofV are from evaluations of the

exact solutions, while foL, from 5 to 10 they are from the We summarize some of the results obtained in this paper
approximation provided by boungb.4) with (6.5 and for in Table V. Note that the. =1 strips of the sg lattice are
L,= they are from the Monte Carlo measurements given irequivalent toL,=2 strips of the triangular lattice, as dis-
Ref.[25]. One sees that for a fixdd,, the value oW onthe  cussed above. At the value gfwhere the nonanalytic locus
infinite-length strip approaches that for the 2D latticegas B crosses the positive real axis, thestate Potts antiferro-
increases. Also, for fixed, the value ofWw for the infinite- magnet has a zero-temperature critical pdiai,44,49.
length strip approaches the value for the 2D latticeLas From the exact solutions for the chromatic polynomials and
increases. In Ref[31] it was shown that this approach is W functions, we thus conclude that tlie=2 Potts(Ising)
nonmonotonic for strips of the square and triangular latticeantiferromagnet has =0 critical point on the.,—o lim-

with periodic transverse boundary conditions and the same i¢s of the cyclic/Mdius strips withL,=2 andL,=3 as well
true here. The approach of the valuesWffor the infinite-  as thelL,=3 strip with torus (equivalently Klein bottlg
length finite-width strips to their respective values for theboundary conditions. Note that this involves frustration ow-
infinite sq lattice is more rapid for the case of periodic trans-ing to the nonbipartite nature of these graphs. As is generic
verse boundary conditions than free transverse boundarfpr a T=0 critical point, the critical singularities are essen-
conditions. This is similar to what was found in REg1] and tial, rather than algebraic singularities, as we have verified
is due to the fact that periodic transverse boundary condifrom an explicit transfer-matrix calculation. The use of strip
tions minimize finite-size artifacts. Quantitatively, for a mod- graphs with periodic or twisted periodic longitudinal bound-
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ary conditions is useful since the crossing3adn the realy For this purpose we use the intersection theorem from graph
axis signal the presence @f=0 critical points for the Potts theory; this states that a gragh can be expressed as the
antiferromagnet at these values qf Just as was the case union of two subgraph&=G;U G, such that the intersec-
with the square and triangular strips, for which the Isingtion of these subgraphs is a complete grapp) G,=K; for
antiferromagnet also hasTa=0 critical point[35,41,44,4%  somej, thenP(G,q)=P(G;,q)P(G,,q)/P(K;,q). Apply-

if one uses free longitudinal boundary conditioi$,does ing this theorem to each square of the above strip, we have
not, in general, cross the positive real axisgat2. This

difference is associated with the noncommutativity in the P(G )= i N4P(G )

definition of W, as discussed befofé2,41,44,4% We also sak, 8o )= @ sqi,.B0:4

find, for both the cyclic/Mbius strips and the torus/Klein i N

bottle strips for which we have calculated exact solutions for _ H . 4P G (A1)
W, in the nondegenerate caseg=2, that theg-state Potts - =4 (9=1) ( quKmBC’q)

antiferromagnet has @=0 critical point atq=4. Since the
L,—oe limit of the cyclic/Mobius strips can be carried out
with increasing even values &f, , for which the chromatic
number is 4, this zero-temperature critical point is unfrus
trated for these strips. In contrast, for thg— limit of the
torus/Klein bottle strip, since migf=6, it is frustrated. Fi-
nally, there is formally a similar critical point &f=0.

whereN, denotes the number of squares on the strip and we
_use the standard notation from combinatorics for the “falling
factorial,”

s—1
a®=11 (a-. (A2)
VIIl. CONCLUSIONS :

In this paper we have presented exact calculations of th®ur results in the text thus also apply to lattices comprised of
zero-temperature partition functioichromatic polynomial  squares such that the four vertices of each square fakm a
andW(q), the exponent of the ground-state entropy, for thewith r>4.
g-state Potts antiferromagnet with next-nearest-neighbor
spin-spin couplings on strips of the square lattice strips B. (K..K) Strips
(equivalently, the nearest-neighbor Potts model on strips of TS P
the sg lattice) with width L,=3 andL,=4 vertices and We discuss here a strip oK, subgraphs, connected such
arbitrarily great length_, vertices. Both free and periodic that successivéK, subgraphs intersect on &g subgraph,
boundary conditions are considered. In the—oo limit, the  with 1<s<r—1, with some longitudinal boundary condi-
resultantW function was calculated. By comparing the val- tions imposed. A member of this general family may be la-
ues of the exacW functions thus obtained for strips with beled as K, ,K,t,BC,). Two of the simplest longitudinal
various widths and boundary conditions versus numericaboundary conditions to impose are free and cyclic, which we
measurements alV for the full 2D sq lattice, we evaluated shall denote as FBCand PBG. The general K,, K, t
the effects of the next-neighbor spin-spin couplings. We=m, FBC,) graph hasn=(r —s)m+s vertices.
showed that the=2 (Ising) andq=4 Potts antiferromag- One simple set of families is the cyclic strifk(, K, t
nets have zero-temperature critical points onlthes lim- =m, PBC). These may think of these graphs as being
its of the strips that we studied. With the generalizatiomof formed by starting with a circuit grapl¢,, and gluing to
from 7, to C, we also determined the analytic structure ofeach edge one edge of a complete gr&ph For these we

W(q) in the g plane. find
q(r)
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A. A reduction theorem whereP(C,,,q) is the chromatic polynomial for the circuit

Consider a strip of a given width and length, made up ofgraph withm vertices, given in the introduction.
squares such that the four vertices of each square are con- Another interesting family is the open strip
nected to form a complete graggy (so that there are—4 (K, ,K;,m,FBC,). We calculate
vertices outside of the stripvith some set of boundary con-
ditions (BC). We shall denote this strip temporarily as M\ m r—1 m
Gsak, .8c- We first show that the chromatic polynomial for pr (k. ,Ks,m,FBg),q]=q<S)<—) :q<s>{ IT @-il .
this graph can easily be expressed in terms of the chromatic i=
polynomial for the corresponding graph with the vertices of (A4)
each square forming l4,, i.e., such that the two diagonally
opposite vertices of each square are connected by an eddg¢ence, in them— o limit,
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(K3,K,,t,PBC) and K3,K,,t, TPBC) strips are the cyclic
and Mdius triangular-lattice strips mentioned above. Thus,
explicitly, for event=2m,

PL(K4,K5,t=2m,PBC,),q]

— _ 2m 2_ _ 27m
FIG. 8. lllustrative strip graph comprised Kf, subgraphs inter- (a=3)"1(q"=3a+ 1) +[(q=2)"]
secting on common edgeX{'s), of a type different than that +(g— D[ (A 22™+ (A22™], (A7)
shown in Fig. 1a). ’ ’

P[(K4,K5,t=2m,TPBC)),q]

q(r) 1U(r—s) r-1 1(r—s)
W=| —5 = =] A5

(q<s>) LH ( ”} (A9 ~(q-3)2" ~1+[(q- 27"

andB=. m m
A —(\
Other cases are more complicated. For a strilk £, i.e., —(g—1)(g—3) (A2 Orizd) ] ,

triangles, in addition to free and periodicyclic) boundary M23™ M2a
conditions, one also has the possibility of twisted periodic (A8)

boundary conditions, which form a Msus strip. The chro-
matic polynomial for the K5,K,,t,PBC,) strip for event ~ Where\,;, j=3,4, were defined in Eqg1.7) above.
was given in Ref[35] (see also Ref.38]); in this case, the For the case of odtl=2m+1, we have

strip can be regarded as being formed from a stripnof

squares with a bond added to each square connecting the PL(K4,K,t=2m+1,PBG),q]

lower-left to upper-right vertex of the square, so that

=2m. The chromatic polynomial for the corresponding-Mo =(gq—3)2m*1i
bius strip, K3,K,,t,TPBC) with event was also given in

—(9?=3g+1)+(q—2)[(q—2)]"

Ref.[35]. For thet— o limit, the W function and associated 1

nonanalytic locus3 were given in Ref[35]. The chromatic + E(q— 1)(q—3)[[()\tzya)m+()\t214)m]
polynomials for the corresponding strip with odd viz.,

(K3,K5,t,PBC) and K3,K,,t, TPBC), were given in Ref. [N 2™ (N20)™]

[45]; thet— oo function W and locusB are the same for both N — } : (A9)

the cyclic and Mbius strips ag increases through even or
odd values. _

In the text we have considered strips in which each square PL(K4 Kz, t=2m+1,TPBC,).q]
forms aK, subgraph. There are actually different classes of S
strips with t repeatedK, subgraphs, in the notation intro- =(q-3)
duced above. An illustration of these is given in Fig. 8.

1
1+(a-2)[(q-2)1"™ 5(1-q)

As an example, we calculate
X[ [(\29™+ (N20)™]
P[(K4,K2,t,BC),q]=(q—3)'P[(K3,K;,t,BC)),q],
(A6) + (9 4q) [(Atz,am—mz»mJH .
where BG=PBC, or TPBC,, respectively, and the N2z~ Ni2a
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